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GENERAL INTRODUCTION 

Many processes in chanistry and physics can be modeled by one or more 

types of events occurring effectively irreversibly and, in general, 

cooperatively at the sites of a lattice. The event distributions for these 

models never attain their equilibrium forms (even at the completion of the 

process) since there are no equilibrating mechanisms operating. The events 

are "frozen" into place once they have occurred. Consequently, equilibrium 

statistics, as obtained from the usual equilibrium models, are 

Inappropriate for describing these systems. Therefore, kinetic models have 

been developed in order to model these types of processes. The aim of 

these models is to describe the time evolution of the event distribution 

given an appropriate set of rates of the events. 

The time evolution of the event distribution over the entire lattice 

i s  g i v e n  b y  a  m a s t e r  e q u a t i o n :  

''a 

B A  " " B  •  " A B  

Here A and B are states of the entire lattice, occurring with probabilities 

and Fg, and ^ g is the transition probability for going from state A 

to state B. 

Thus the first term on the right side of (1.1) describes the increase 

in F^ due to state B undergoing a transition to state A, this is summed 

over all possible states B. The second term describes the loss in F^ due 
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to transitions from state A to all possible states B. The time evolution 

of is completely described by the solution of (1.1). Note that (1.1) 

pertains to reversible, as well as irreversible, processes. 

It is often more convenient (and for an infinite lattice more 

appropriate) to rewrite the master equations in hierarchial form. This can 

be done by formally summing (1.1) over all states in which the particular 

subconfiguration of sites of interest appears (the hierarchy of rate 

equations for the probabilities of various subconfigurations of sites can 

also be written down intuitively). 

Consider a specific irreversible filling process o + a at single 

sites. For a particular subconfiguration a one can write the rate 

equation 

"jL 
a.=0 

Here f^ is the probability of finding a configuration a, a* denotes the 

configuration of sites which influence the filling rate of j but are not in 

the configuration a, T . is the rate for filling site j (note that the rate 
£ 

is a function of a*), and the sums over j are over all sites j in c which 

are filled 'a' and empty 'o', respectively. This equation is easily 

understood intuitively. The first term in (1.2) corresponds to the 
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creation of a by filling the jth site in the configuration a(oj + o), which 

has the jth site empty, summed over all such possible sites j, and the 

second term corresponds to the destruction of a by filling any of its empty 

sites. The generalization of (1.2) to cases where more than one site 

simultaneously fills is straightforward. 

Equation (1.2) is quite general and is easily written in explicit form 

for a specific choice of lattice (size, connectivity, and site-type 

distribution) and rates. Note that the initial conditions (empty or 

partially filled lattice) are also arbitrary. For an infinite lattice 

(1.2) has an infinite number of coupled equations (and for large, finite 

lattices the number of equations is effectively infinite). 

In this work we will be presenting some refinements in the solution 

techniques which have been used to obtain results from equation (1.2), 

extensions of previous results, and also extensions of tne models to some 

new processes. A brief discussion of the solution methods follows. 

It is often convenient to perform some preliminary manipulations on 

the hierarchy in order to display more clearly features that can be 

exploited in obtaining solutions. 

All of the possible equations of the form (1.2) are not independent. 

It is possible, through conservation of probability, to express any 

subconfiguration containing filled sites in terms of those containing only 

empty sites. The advantages of this will become apparent shortly. If we 

decompose o into the subset of its filled sites, {n}^, and the subset of 

its empty sites, {m}^ we have a = {nj^^ + {m}^. It then follows that 
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Instead of using the entire hierarchy (1.2), we can consider an equivalent 

subhierarchy for f's containing only empty sites. Note that equivalently 

we could also express the hierarchy in terms of f's containing only filled 

sites. 

In certain cases, a subset of the hierarchy can be written which is 

independent of the other equations in the hierarchy. Thus, for the filling 

of single, adjacent pairs, triples, ... or any connected group of sites, 

with arbitrary finite blocking range (range R blocking means that filling 

cannot occur at a site if there are one or more filled sites within R 

lattice vectors), one can show that the minimal closed hierarchy involves 

only f|^| , where {m}^ are connected clusters of empty sites, if the 

filling events have nearest-neighbor cooperative effects or the events are 

random (i.e., the probability of filling a site or a group of sites is 

independent of the states of the neighboring sites). This structure was 

first realized by Plate et and then by Wolf. This further 

reduces the size and complexity of the hierarchy. Nevertheless, for an 

infinite lattice this minimal hierarchy is still infinite. 

One way to obtain closed form solutions, in certain cases, is to 

recast this reduced hierarchy in terms of conditional probabilities q^ -, 

(= f^ /f^,) of £ given a'. In keeping with the above discussion, we 

take a to be a subconfiguration containing only empty sites. These 

conditional probability equations can then be truncated (in some cases 

exactly) in order to obtain solutions. This truncation is based upon the 

following fundamental shielding property which states for a transi ationally 

invariant system: Suppose that a wall of empty sites separates the 
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lattice into two disconnected regions, and is sufficiently thick that any 

event on the lattice is not simultaneously affected by (the state of) sites 

on both sides; then sites on one side are shielded from the effect of 

those on the other. Proof of this property is via self-consistency with 

the hierarchial equations^^\ Hence, for one-dimensional N-raer filling 

with range R cooperative effects, we need a wall of empty sites of width N 

+ 2R - 1 to shield sites on one side from the influence of those on the 

other. As an example, if we consider monomer (1 site) filling with range 1 

(nearest-neighbor) cooperative effects, we need a shielding wall of width 

2. In two or higher dimensions this wall either closes upon itself or (for 

an infinite lattice) contains an infinite number of sites, however, in one 

dimension (ID) two adjacent empty sites will shield. In terms of 

conditional probabilities ttiis means = %*** = " > 2. 

(assuming a compatible set of initial conditions) where *(= 5) represents a 

single conditioning site and indicates a string of n conditioning sites. 

Consequently, we are able to truncate exactly and solve the hierarchy of 

equations. In general, even in ID, exact solution is not possible and the 

shielding property is used to obtain approximate solutions by applying 

various orders of truncation to the conditional probabilities. Note that 

only empty sites shield, which explains why it was advantageous to express 

the hierarchy in terms of the f, , . 
I J m 

As an alternate method to truncation for solving the hierarchial 

equations we also consider formal density expansions. In this method we 

write the hierarchy in terms of probabilities of subconfigurations 

containing only filled sites (we also confine ourselves to the case of the 
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initially empty lattice). We are then able (through simple, but tedious 

manipulations) to express the f^'s in terms of expansions in the density. 

However, the complexity in calculating the coefficients increases rapidly 

as the order in the density increases. Therefore, these expansions are 

most useful at low density (coverage), although a resummation procedure can 

be implemented which allows accurate results to be obtained even at 

saturation. 

Before discussing the solution and results obtained in this work it is 

appropriate to review the literature concerning other kinetic lattice 

models. We also will review applications of these models to physical 

processes. Previous reviews, which are updated here, have been provided by 

Wolfand Burgess 

A. Review of Random Filling 

The first statistical treatment of a lattice filling problem was by 

Flory(^) in 1939 where he analyzed the ID random filling of adjacent pairs 

of sites (dimers). He used recursion relations based upon the observation 

that each event which took place reduces the original problem into two 

smaller ones. He used this model to describe the condensation of ketone 

groups of poly(methyl vinyl)ketone. 

E. S. Page^^^ solved the ID random dimer problem by using generating 

function techniques. He was motivated by a problem where molecular 

hydrogen is absorbed upon two adjacent sites on a surface and is 

subsequently absorbed by mercury. He was the first to observe that the 

results depend upon the manner in which the adjacent sites are chosen. 
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simultaneously (conventional filling) or by first picking one site and then 

randomly filling one of its unoccupied neighbor sites (end-on filling). We 

will be concerned with conventional filling here unless it is specified 

otherwise. 

Cohen and Reiss^^^ solved the kinetic equations for the probabilities 

of empty strings of sites through the use of transform techniques. They 

considered ID random dimer filling on finite rings and linear lattices as 

well as the infinite lattice. They were the first to discover the empty 

site shielding property, discussed earlier, which allows for exact 

truncation and solution of the infinite hierarchy for this problem. 

This problan has also been treated by other authors by recursion 

techniques, density expansions, use of Markov chains, and 

generating function techniques. Using the master equation approach 

outlined earlier and an exact truncation based on the shielding property 

discovered by Cohen and Reiss^^\ Vette et were able to exactly 

solve the dimer problem as well. Based on this technique Wolfand Evans 

et were able to determine the two-point correlations. 

The more general case of ID random N-mer filling (where N denotes the 

number of consecutive lattice sites filled by the species) has been 

considered by several authors through the use of recurrence relations 

and/or generating functionsWolf et were able to exactly 

analyze these processes through hierarchy truncation. Proposed 

applications include the binding of large ligands to polynucleotides or 

(211 
polypeptides^ ' and modeling the crystallization of linear polymer 

c h a i n s .  
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The first analytical treatment of a higher-dimensional random filling 

process was by Jackson and Montroll^^®^ who considered random dimer filling 

in 3D. This was motivated by a study of the recombination of free radicals 

in a quasicrystalline matrix. They used a simplified statistical model 

where they average over all possible configurations. 

Barron et ali n  c o n s i d e r i n g  t h e  d e h y d r a t i o n  o f  p o l y ( a c r y l i c  

acid) and of poly{methacrylic acid), proposed that the carboxyl groups pair 

randomly, which leads to ID dimer filling if both carboxyl groups are on 

the same chain. However, they also proposed a model where groups on 

neighboring chains pair (represented by a 2 x M lattice) such that only 

diagonal-nearest-neighbor filling is allowed. 

Downton^^^^ considered briefly the 2D random dimer problem. He 

approximated the square lattice by parallel ID lattices such that tne ID 

lattices each filled to saturation and only then could the pairs of empty 

sites in adjacent ID lattices fill (see Figure 1). 

There have been numerous Monte Carlo simulations of the 2D random 

dimer filling problem. Robertssuggested it in 1935 as a model 

for Og, Hg or adsorption onto a single crystal of W. Other applications 

included y-alumina dehydroxylation^^®^, dehydration of silica gels^^®\ 

desorption of N from water sorption to form hydroxyl s on metal ion 

sites^^^^, and g-CO adsorption onto metals^^^^. In their work on CO 

Hayden and Klemperer^^^^ also consider coadsorption of g-CO (two-point or 

dimer filling) and a-CO (one-point or monomer filling) onto binary metal 

alloy surfaces. Their alloys consisted of random mixtures of active and 

inactive sites, so the effect of inactive sites was considered as well. 
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11 H n H 

Figure 1: Dimer filling of parallel ID linear lattices 

saturation prior to filling between lattices 

sites marked by x) 

which each fill to 

(which can occur on 
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McQuistan jt motivated by the CO coadsorption problem did a 

statistical analysis for small rectangular lattices (of 12 sites or less). 

They counted all possible configurations using recursion relations. 

Vette et ala p p r o x i m a t e d  t h e  s o l u t i o n  t o  2 0  r a n d o m  d i m e r  f i l l i n g  

on triangular, square, and hexagonal lattices through approximate 

truncation of the infinite hierarchy. 

Blaisdell and Solomonhave performed Monte Carlo simulations in 

two and higher dimensions in order to test the generalized Palasti 

conjecture (which states that if, for N-mer filling of a ID lattice with 

the saturation coverage, equal to c, then for N'^-mer filling of a 

d-dimensional lattice is c^). They have performed simulations for 

variously sized squares of sites filling finite square lattices, cubes of 

sites filling cubic lattices, and a few smaller 40 trials. Given their 

results on finite lattices they extrapolated to find the infinite lattice 

results. These simulations represent the only previous attempt to obtain 

results for species larger than a dimer in 20. 

Thus, a need exists to expand upon the limited modeling which has been 

done for random filling in higher dimensions. The first half of this 

thesis addresses that need. In particular we extend the truncation scheme 

of Vette et al.to higher orders for random dimer filling of hexagonal, 

square and triangular lattices. From these calculations we are able to 

obtain nighly accurate results and provide sufficient insight into the 

shielding propensity of subconfigurations of empty sites so as to justify a 

more sophisticated refinanent of the truncation procedure. We also provide 

the first results for 20 trimer and tetramer filling. Additionally, we 
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demonstrate how coadsorption or a random distribution of defects can be 

handled giving explicit results for two- and three-dimensional problems, 

respectively. These complications occur in problems such as the CO 

adsorption modeled by Hayden and Klemperer^^^^, where both occur, or the 

free-radical-recombi nation model proposed by Jackson and Montroll^^^\ 

where there can be inactive sites. We also present the first 30 example of 

solution using formal density expansions (coupled with resummation) and 

explicitly demonstrate how to consider a random distribution of inactive 

sites for this method, as well. 

B. Review of Cooperative Filling 

There has been a considerable amount of work done on cooperative 

models in ID. Keller^^®^, Alfrey and Lloyd^^^\ and Arends^^®^ were tne 

first to consider the simplest such cooperative process, monomer filling 

with nearest-neighbor (NN) cooperative effects (here cooperative means that 

different, but nonzero, filling rates apply for sites which have different 

numbers of filled neighboring sites). They considered it in tne context of 

reactions such as the dehydrocnlorination of polyvinyl chloride or the 

quaternization of poly(4-vinyl pyridine). Each of these sets of authors 

were able to solve their rather similar models exactly. 

McQuarrie et presented an exact solution to the NN cooperative 

monomer problem for a model which is the kinetic analog of the Zimm-Bragg 

equilibrium modelThey were able to solve the hierarchy of equations 

for consecutive n-tuples of empty sites in terms of incomplete gamma func

tions. They used this model to describe the denaturation of polypeptides. 
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This same application was studied by who developed a formalism 

to describe chemical kinetics based on the path integral model of 

Kikuchi^^^\ Schwarz^^^^ later attempted a general solution for the 

nonequilibriun behavior of a linear Ising lattice which was similar in 

spirit to Go's work. In particular, the solutions were not exact and the 

approximations used were equivalent. Schwarz called his the "triplet 

closure rule" and it amounted to a 2"^-order Markovian truncation where any 

two sites shield. However, as we have discussed, to truncate exactly, for 

this case, both sites must be empty^^*^*^^^. This exact truncation, 

described earlier, has been used in more recent statistical 

treatmentsand will exploited later in this work. 

Other methods for obtaining exact solutions include the generating 

function techniques of Boucherdirectly solving the hierarchy through 

guessing the solution form^^^ and a "principle of independence" of 

unreacted neighborswhich is related to the exact shielding 

truncation. 

The extension to N-mer filling with NN cooperative effects has been 

made by several authors. Wolf exactly solved the 

N-mer problem for arbitrary (finite) range N cooperative effects. Some 

additional complications which have been investigated include consecutive 

reaction problems^^^"^^^ and lattices with periodic or stochastic site 

distributionswhich arise in the context of the study of 

copolymers. Other problems addressed include filling in 

stages34,51,52)^ competitive filling^^^*^^^, longer, range 2, 

cooperative effectsand mobility^^^\ 
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E v a n s  ^ s h o w e d  h o w  a p p r o x i m a t e  h i e r a r c h y  t r u n c a t i o n  c o u l d  b e  

applied to more general problems involving coopérâtivity. Specifically, 

they looked at monomer filling with nearest-neighbor cooperative effects on 

a square lattice (see ref. (3) also). They later also calculated spatial 

correlations for this more general problem as well as for random dimer 

filling^^^^. Evans found that this truncation can lead to exact solution 

on Bethe lattices (lattices with no closed loops) and he showed this in 

solving the NN cooperative monomer and the random dimer problems^^®^. 

Evans and Hoffmanfound that exact solutions could be obtained for 

"almost random" filling (where the filling rate is independent of the 

surrounding sites except when all NN sites are filled) of a lattice with 

arbitrary dimension or coordination number. The mechanism proposed by 

Rosei et to deposit carbidic carbon on Ni(110) from dissociative 

adsorption of CO conforms to the conditions of 2D "almost random" filling. 

As an alternate method to truncation for solution of the infinite 

hierarchy, Hoffmanand Evansproposed formal density expansions. 

Hoffman considered cooperative dimer filling of a square lattice. These 

results, however, are also applicable to more general irreversible 

processes on uniform, infinite lattices with Arrhenius rates and pairwise 

additive activation energy (they provide a diagrammatic characterization 

for terms in the expansions). Evansconsidered general cooperative 

processes on uniform, periodic or defective lattices of arbitrary size 

(finite, semi-infinite, or infinite). He also considered coadsorption as 

well as resummation procedures. Formal resummations of density expansions 

h a v e  b e e n  a l s o  c o n s i d e r e d  b y  K n o d e l  a n d  H o f f m a n .  
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Some additional applications for 2D cooperative models include the 

chemisorption of water vapor onto Fe(OOl) to form an immobile oxide (or 

hydroxyl group). Dwyer et al.^^^^ proposed that this could be modeled by 

monomer adsorption with NN blocking (sites with one or more NN sites filled 

cannot fill) on a square lattice. 

Similar to the above problem, nitrogen appears to chemisorb on W(IOO) 

as a monomer with NN blocking and a longer range cooperative effect. Wolf 

et modeled it as ID monomer filling with NN blocking. The true 

surface geometry of W(IOO) is a square lattice and the modifications due to 

this are discussed. 

The majority of the above references are concerned only with solving 

for the probabilities of finding clusters of empty sites. The additional 

problem of obtaining probabilities of clusters of filled sites is discussed 

by several authors5,14,20,64,65)^ Plate et first solved this 

problem exactly for the ID NN cooperative monomer process on the infinite 

lattice and Wolf^^^ first solved it on the semi-infinite lattice. However, 

only the values for very small clusters were obtained. There had been no 

analyses of the entire cluster-size distribution or, in particular, its 

asymptotic behavior. 

Therefore, the second half of this thesis is concerned with 

determination of the cluster-size distribution for a lattice process. We 

are able to solve for the exact cluster-size distribution for cluster sizes 

up to the asymptotic regime and thus estimate the asymptotic decay rate for 

ID monomer filling with NN cooperative effects or NN blocking and 2"^-NN 

cooperative effects. Furthermore, indication is given as to how asymptotic 

properties can be extracted directly from the hierarchial equations. 
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C. Cluster Growth Via Random Walks 

A second method for studying cluster growth is also discussed. In 

this method the growth of a single cluster is modeled by the aggregation of 

random walkers about some nucleation center. A random walker is introduced 

onto a finite lattice and walks until it encounters a trap site where it is 

irreversibly trapped. By specifying all sites adjacent to a cluster to be 

trap sites this process corresponds to irreversible cluster growth 

(Witten-Sander irreversible particle-cluster aggregation^®®^). From 

calculating the probabilities of being caught by particular traps, it is 

possible to determine the shape distribution of the clusters formed. 

Differently sized and shaped clusters will have different growth rates 

associated with them and these growth rates can be related to (reciprocals 

of) the associated average walk lengths. Rates, determined in this manner, 

can then be used as input into the kinetic hierarchial equations for 

determining the cluster-size distribution, as a function of time, for a 

Brownian aggregation process (a process where a gas of random walkers 

irreversibly aggregate to form immobile clusters). 

D. Explanation of Dissertation Format 

In Paper I we consider random N-mer filling of 2D lattices. In 

particular, dimer and trimer filling of hexagonal, square, and triangular 

lattices and square tetramer filling of a square lattice are considered 

with special emphasis on dimer filling of a square lattice. Various 
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truncation techniques are developed and contrasted. Particular emphasis is 

given to the saturation coverage. Paper II extends the methods of the 

first paper to consider competitive random filling of 2D lattices. The 

behavior of these processes are displayed by plotting "filling 

trajectories" of the partial coverages for different ratios of the two 

competing species filling rates. The competing species may be of the sane 

size or different sizes. Examples are also given for the competition of 

more than two species. In Paper III, random dimer filling of a cubic 

lattice is considered. Besides the truncation techniques developed 

previously, techniques involving formal density expansions (coupled with 

resummation) and spectral analysis are described. The effect of a random 

distribution of inactive sites is also considered. 

In the fourth and fifth papers, a cooperative problem is studied. 10 

monomer filling with NN cooperative effects is considered with emphasis 

upon determination of the cluster-size distribution. Paper VI discusses 

random walks on finite lattices with completely adsorbing traps and their 

relationship to the shape of clusters formed by irreversible aggregation. 

It also indicates, for a Brownian aggregation process, how cluster-size 

distributions can be determined from the average walk lengths calculated 

above. 

In the Monte Carlo Simulations section we compare certain of our 

approximate truncation results (from Papers I and III) with those obtained 

from direct simulation. A description of the simulation technique is also 

given. A summary is presented in the Conclusion section along with a brief 

discussion of future work. 
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The arrangement of this dissertation follows the alternate style 

format. The six papers presented here are collaborative efforts, primarily 

with Dr. J. W. Evans. Certain components of these papers are predominantly 

the work of Dr. Evans. In particular, these include the formal analysis in 

Papers III and VI, and the formal asymptotic cluster-size distribution 

analysis in Papers IV and V. Paper I, "Irreversible immobile random 

adsorption of dimers, trimers, ... on 2D lattices", was published in volume 

82 of the Journal of Chemical Physics on pages 2795-2810. Paper II, 

"Competitive irreversible random one-, two-, three-, ... point adsorption 
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ABSTRACT 

Models where pairs, triples, or larger (typically connected) sets of 

sites on a 2D lattice "fill" irreversibly (described here as dimer, trimer, 

... filling or adsorption), either randomly or cooperatively, are required 

to describe many surface adsorption and reaction processes. Since filling 

is assumed to be irreversible and immobile (species are "frozen" once 

adsorbed), even the stationary, saturation state, which is nontrivial since 

the lattice cannot fill completely, is not in equilibrium. The kinetics 

and statistics of these processes are naturally described by recasting the 

master equations in hierarchial form for probabilities of subconfigurations 

of empty sites. These hierarchies are infinite for the infinite lattices 

considered here, but approximate solutions can be obtained by implementing 

truncation procedures. Those used here exploit a shielding property of 

suitable walls of empty sites peculiar to irreversible filling processes. 

Accurate results, including saturation coverage estimates, are presented 

for random filling of dimers, and trimers of different shapes, on various 

infinite 2D lattices, and of square tetramers on an infinite square 

lattice. 
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I. INTRODUCTION 

Consider processes where adjacent pairs of (empty) sites on a uniform 

lattice are filled irreversibly ("dimer filling"), either randomly or 

cooperatively. In the former case, a single rate, k, characterizes the 

process, whereas in the latter, rates must be prescribed for each possible 

configuration of the environment influencing filling of an empty pair. 

Since, by assumption, the dimers are frozen once adsorbed (they cannot 

desorb or hop), the resulting distribution of filled sites is not described 

by equilibrium statistics even in the stationary, saturation state. 

Furthermore, the lattice does not completely fill here since isolated empty 

sites are created which can never fill (see Fig. la). Clearly these 

distributions, even for random dimer filling, incorporate nontrivial 

spatial correlations (unlike random monomer filling). More generally, one 

could consider processes where adjacent triples, or other sets of sites (of 

fixed relative configuration), fill irreversibly ("trimer or N-mer fill

ing") either randomly or cooperatively. Again, the resulting 

nonequilibrium distributions of filled sites are spatially correlated and 

the lattice is not completely filled at saturation (where a variety of 

isolated empty clusters now remain, as shown in Fig. 1). 

The quantities of interest here are proabilities, P^, for 

subconfigurations of sites, a, specified either empty 'o' or filled 'a'. 

Equations for the time evolution of these can be obtained by rewriting the 

master equations in hierarchial form (the latter can be written down 

directly from intuition). For infinite, uniform lattices, of interest 
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(a) (b) 

(e) Cf) 

Figure 1; Irreversible filling of a square lattice by (a) dimers, (b) 

linear trimers, (c) bent trimers, (d) square tetramers, (e) of a 

triangular lattice by triangular trimers, and (f) of a hexagonal 

lattice by bent trimers. A site labeled with an 'o' can never 

fill 
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here, these hierarchies are infinite making their solution nontrivial. We 

restrict our attention to initially empty lattices in which case time 

evolution preserves invariance of the under all lattice group operations 

(e.g., translation and rotation). Thus we often naturally consider the 

as functions of coverage, 8 = P_ s 1 - P., rather than time 't'. Of 

course, the infinite time values of the P^ provide complete information 

about the saturation state. The saturation coverage is the quantity of 

prime importance here but, nontrivial spatial correlations and, for trimer 

and N-mer filling, nonzero probabilities of various empty clusters, 

described in the following paragraph, can also be determined. 

For filling on a ID lattice by dimers, only isolated empty sites 

remain at saturation^^'^®^ (so P^g^ = P^ here), but for filling by N-mers 

(taking N consecutive sites at a time), isolated empty sites and empty 

pairs, triples, •••, (N-l)-tuples remain at saturation^^'^^. As indicated 

above, for dimer filling on any lattice, only isolated empty sites ranain 

at saturation(^), so here, e.g., P = P for a 2D square lattice (Fig. 
a§a 

la). However the saturation state is more complicated for trimer, etc., 

filling as indicated by thé following 2D square lattice examples. For 

linear trimer filling (Fig. lb), one finds at saturation, isolated empty 

sites, empty pairs, empty bent triples, ..., so P , P , P ... and 

4= a§ft 

therefore P , P^^, P , P , P , ... (i.e., empty staircase 
00 00 go 

configurations) have nonzero saturation values, as does P . For bent 
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trimer filling (see Fig. le), P , P , P , ••• and therefore P , 
aoa aooa aooQa 

P__, P.P__^, have nonzero saturation values. For square tetramer 00 000 0000 

filling (see Fig. Id), we similarly see that P^, P^^, P , Pqqq. ••• all 
00 

have nonzero saturation values. A number of these quantities are 

determined in this work. 

For ID lattices, these models have an important application in 

describing irreversible reaction on polymer chainsDimer filling 

typically models a cyclization reaction where adjacent groups link^^*^^^. 

N-mer filling models the binding to N consecutive sites of large 

ligands^^'^*^^. Here we are primarily interested in these models for 2D 

lattices where they are essential in the analysis of certain irreversible 

immobile chemisorption processes as well as various irreversible reactions 

between groups on surfaces. There is increasing evidence that, for 

chemisorption processes, often surface mobility (and desorption) are 

negligible^^^"^^). Consequently equilibrium statistical mechanics is 

inappropriate for describing the filled site distribution since it relies 

on these mechanisms to achieve equilibration. The first specific 

application of the 2D random dimer filling model was by Roberts^^^^ to 0^ 

and adsorption on W. Other more recent applications include description 

of (i) desorption of nitrogen adatoms in adjacent pairs^^^^, i.e., 

adsorption of dimer holes; (ii) dehydration of y-Alumina where adjacent 

hydroxy! (ion) groups combine to form water molecules^^^^; (iii) water 

sorption at adjacent pairs of metal ion sites (bridged by oxygen atoms) to 

create two hydroxyl groups; this study is in part motivated by desire to 

understand more complex dehydration-hydration processes on hydrotreating 
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catalysts^^^); and (iv) adsorption of CO at adjacent sites on W (two-point 

Obviously the more general N-mer filling models will be 

required for the adsorption of larger molecules (the number of sites 

filled, e.g., three for trimer filling, need not, however, correspond to 

the number of atoms in the adsorbate)^^®^. Sometimes steric hindrance will 

require that filling is blocked within a certain range of a previously 

adsorbed species. Recent studies of hydrocarbon adsorption provide 

f 191 
examples of such irreversible binding^ 

Before describing the contribution of this work, we briefly review 

previous analyses of these models. The earliest exact results come from 

Flory's^^^) statistical analysis of saturation coverages for random dimer 

filling on ID lattices. For an infinite lattice, a value of l-e-2 was 

obtained. More extensive statistical analyses have also been given^^®^. 

In addition, for the infinite ID lattice, a number of treatments involving 

exact hierarchy truncation based on a shielding property of a single empty 

site provide information on the time dependence of n-tuples of empty sites, 

and recover the above mentioned saturation value^'*^'. Two-point spatial 

correlations have also been analyzed and shown to determine all spatial 

correlations. Statistical analyses have also been given for random 

N-mer filling on finite ID lattices^^®*^^^, and exact solution, via 

hierarchy truncation (exploiting a shielding property of empty 

(N-l)-tuples), is again possible for filling of an infinite, uniform ID 

lattice. Saturation coverage values have been tabulated for various 

More generally exact solution via hierarchy trunction is possible for N-mer 

filling with, not just nearest neighborbut also range N cooperative 
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effects^*). Exact solution via hierarchy truncation is also possible for 

dimer, trimer, filling on Bethe lattices, either randomly, or with 

nearest-neighbor cooperative effects^^*). 

A statistical analysis has been presented for random dimer filling on 

several small finite latticesFor random dimer, trimer, ••• filling 

on infinite 2D (or higher dimensional) lattices, exact closed form solution 

of the hierarchy is not possible (although there still exists a shielding 

property of suitable walls of empty sitesAn approximate truncation 

scheme has been implemented previously for random dimer filling^^^, and 

will be developed further here. Formal coverage (density) expansions are 

available even for cooperative filling^^*^^ and a resisnmation scheme, 

exploiting exact Bethe lattice results, has been developed for random dimer 

filling(^). There have been numerous Monte Carlo simulations of random 

dimer filling, concentrating on determination of the saturation 

coverageThe trimer filling model has been mentioned recently in 

t h e  c o n t e x t  o f  s u r f a c e  a d s o r p t i o n ,  b u t  n o  a n a l y s i s  h a s  b e e n  g i v e n I n  

fact, apart from monomer and dimer filling, the only other 2D filling 

process considered previously is random square N^-mer filling on a square 

lattice^^^). Here, according to the generalized Palasti conjecture, tne 

saturation coverage for an infinite lattice is the square of that for 

random N-mer filling on an infinite ID lattice, e.g., (l-e~2)2 for random 

square tetramer filling. 

In this work, we analyze and present results for several random 

filling processes on a variety of infinite, uniform 2D lattices. 

Approximate solutions are obtained for the infinite, closed hierarchies of 
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rate equations satisfied by probabilities for subconfigurations of empty 

sites. The approximate truncation procedure implemented here is motivated 

by hierarchial structure, in particular, a shielding property of suitable 

walls of empty sites (rather than inappropriately borrowing, e.g., 

Kirkwood-style factorizations, or Bethe-type approximations from 

equilibrium theory). The ID analogues of these schemes recover exact 

results. For random dimer filling, the simplest truncation scheme, which 

corresponds to that used previously by Vette et is extended to 

higher orders for square, hexagonal and triangular lattices. Extremely 

accurate results are obtained for the probabilities of various small 

compact subconfigurations. These benchmark calculations also provide 

valuable insight into the structure of the hierarchy solutions and, in 

particular, into the shielding propensity of various subconfigurations of 

empty sites. Furthermore they suggest corresponding natural refinements of 

the truncation procedure. By solving appropriately truncated equations to 

various orders, we also provide the first results for random filling of 

linear and bent trimers on a square lattice, bent trimers on a hexagonal 

lattice, and triangular trimers on a triangular lattice. We also treat 

random square tetramer filling on a square lattice, the results from which 

can be compared with numerical simulations and the generalized Palasti 

conjecture. 

The hierarchial rate equations for random dimer, trimer, . filling 

are described in Section II, first for probabilities, P of empty 

subconfigurations, and then for corresponding conditional probabilities, 

Q ^. In Section III, after reviewing the shielding property for suitable 
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walls of empty sites, we describe a truncation procedure for the 

Q hierarchies which follows naturally from this. Refinements are indicated 

with emphasis on the random dimer filling case. Results from various 

levels of truncation are described in Section IV for the random filling 

processes listed above. Some interesting isomorphisms between different 

filling processes are described in Section V. Finally some conclusions and 

comparisons with previous work are given in Section VI, together with a 

discussion of extensions of these analyses. 
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II. THE HIERARCHIAL RATE EQUATIONS 

Let {m} represent some subset of m sites and denote the 

probability that these are empty. The can be regarded as functions of 

time, t, or lattice coverage, 8 = 1- P^^ (assuming translational 

invariance). Hereafter we set the filling rate, k, equal to unity without 

loss of generality (this simply corresponds to transforming to a chemical 

time scale t' = kt). 

In presenting the hierarchial rate equations for the is 

convenient to define n^^^j to be the number of ways that the adsorbing 

species can land entirely within {m}, and n^^^ ' "{m}* 

for random dimer filling, n^^^ is the number of adjacent pairs in {m}, 

and(5.27) 

'{m) " " "(m) %) " "j.M V{ni) ' 

where n^ - n^^^ is the number of sites in {m} adjacent to j. 

These terms correspond to destruction of the empty configuration {m} from 

dimers landing completely within, and partly overlapping {m}, respectively. 

For random N-mer filling, a configuration, {p}, is called sub-N-mer if it 

contains p<N sites and can be filled by adsorption of a single N-mer (thus 

{p} consists of single sites and adjacent pairs of sites for trimer 

filling). Here the hierarchy equations have the form 

°{m) = - V) %) - %).{« VhW ' (2-2) 

{p} sub-N-mer 
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where these terms correspond to destruction of empty {m} from N-mer landing 

completely within, and partly overlapping {m}, respectively. Note that 

(2.2) includes (2.1) as a special case and that, for N-mers which fill 

connected sets of sites, (2.1,2) include infinite closed subhierarchies for 

probabilities of connected empty clusters. 

Here we consider only filling of infinite, uniform, initially empty 

lattices (i.e., = 1 for all {m} at t = 0) where the hierarchial 

equations clearly preserve the invariance of the under all lattice 

group operations. In particular these are translationally invariant which 

allows us to denote the probability of an empty site, an empty pair, ... by 

P^, P^Q, ... respectively. With this notation, it is elucidating to 

consider the following examples of (2.1,2) for filling of a 2D square 

lattice (where all lattice symmetries have been exploited to simplify these 

equations): 

dimer filling: d/dt P^ = - 4?^^ 

P», = - Poo - ZPooo -

'ooo = - 2^000 - ^^oooo -

: (2.3a) 

linear trimer filling: d/dt P^ = - 6?^^^ 
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d/dt Poo = - 2Pooo - 2Poooo " 

d/dt P = - P - 2P - 2P 
000 000 0000 00000 

" " ''l ' 

d/dt P = - 2P - 2P - 4P 
00 000 000 00 

• ^^oo8 • • ^^o8oo 

(2.3b) 

bent trimer filling: d/dt P^ = - 12P 
o8 

d/dt Poo = - 4P^g - ^oo8 " ^o8° • ^88 " *^80 

(2.3c) 

square tetramer filling: d/dt P^ = - 4P 
88 

d/dt Poo = - 2Pgg - 4Pggo 

(2.3d) 
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The truncation procedures discussed in the next section deal directly 

witn tne conditional probabilities " 

conditioned sites {n} to be empty given the m conditioning sites {m} are 

empty. Thus it is convenient to recast (2.2) in an equivalent form which 

involves these Q's explicitly (rather than P's). One obtains 

straightforwardly from (2.2), 

d/dt in = S({n}+{m}) - S({m}) , (2.4a) 

Where S({r}) = d/dt tn "(p).(r} "(pl.tr) (2-'"') 

{p}sub-N-mer 

Note that only for random dimer filling does (2.4a) involve a closed 

subhierarchy for Q's with a single conditioned site. This simplification 

has ramifications for the implementation of truncation. In the following, 

'o' denotes empty conditioned, and ' empty conditioning sites, so (^ = 

Pg, Pqq/Pq> . Then, for the 2D square lattice examples described 

in (2-3), the following Q hierarchies are obtained: 

dimer filling: d/dt &n = - 4Q^^ 

d/dt in = - 1 - - 4Q + 

d/dt in Ao** = - 1 - - 2Q 

(2.5a) 
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linear trimer filling; 

d/dt tn - - 60^ 

d/dt »n = - 2Q^ - 20 - - Q^) 

- "(U - 'oo») 

d/dt in 1 - - Qq^^) - 2(QQQ^^^ - Qoo^^) 

2(Q O - Q J - 4(Q Q - Q g) - Q p - 2Q 

d/dt in pQQ^ = S(ooo) - S{o) 

= (S(ooo) - S(oo)) + (S(oo) - S(o)) 

= d/dt in Q... + d/dt in Q 
099 09 

: (2.5b) 

bent trimer filling: 

d/dt in Qq = - 12Q 

d/dt in = - 4Q - 4Q - 4Q - 4Q„„ - 4Q „ + 12Q 

(2.5c) 
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square tetramer filling; d/dt in = - 4Q 

d / d t -  Q g j )  

(2.5d) 

Here one should note obvious equalities such as Q„. = Q-._, Q . = 

Q , . There are various other equalities imposed on 

the Q's from physical constraints. For dimer filling, since it is not 

possible to have a filled site surrounded by empty sites (filled sites must 

occur in pairs), clearly Q = Q etc. (here represents an 

unspecified site). Similarly, for linear trimer filling, Q = Q 
' 0(^ 

since there is no way that the left unspecified site could be filled given 

its environment (tnis identity does not hold for bent trimer filling). 

We note that the hierarchies (2.5b,c,d) can be written in an equiva

lent form involving only Q's with a single conditioned site '0', since Q's 

with several conditioned sites can be simply factorized in terms of these. 

For example. 

^00*<^ " ^0000^^00 ~ (^oooo^^ooo^^^ooo^^oo^ ~ ^0*** 

~ (^ornoo^^o-oo^^^o-oo^^oo^ ~ ^40** ^0-** 

^ '40 ".9 ^ 
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which also illustrates exact product relationships between these Q's tnat 

are obviously consistent with the Q hierarchy (cf. (2.5b)). Various other 

nontrivial identities will be indicated in the discussion of shielding in 

the following section. 

Once the Q hierarchy equations are solved, values for the P's can be 

obtained from such identities as 

(2.7) 
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III. THE EMPTY SITE SHIELDING PROPERTY AND HIERARCHY TRUNCATION 

In this section, we first describe a shielding property of suitable 

walls of empty sites, then introduce various truncation schemes based 

straightforwardly on this property. Finally, for random dimer filling, we 

introduce a refined truncation scheme which exploits this shielding 

property to the fullest. 

A. The Empty Site Shielding Property 

The most general statement of this property applicable to general 

irreversible filling processes, including the ones of interest here, is as 

follows^®^: consider a wall of sites specified empty which divides the 

lattice into two disconnected regions, and is sufficiently thick that a 

filling event occuring on the lattice is not simultaneously affected by the 

state of sites on both sides of the wall; then such a wall completely 

shields sites on one side from the influence of those on the other. 

Thus for random dimer filling (random N-mer filling, taking N 

consecutive sites at a time) on a ID lattice, a single empty site (a block 

of N-1 empty sites) shields sites on one side from the influence of those 

on the other^^'*). For example with random N-mer filling, if P^ denotes 

the probability of finding 'm' consecutive empty sites, the conditional 

probabilities 5 5 are equal to for m > 

m m 

N-1. For a two-dimensional lattice, the shielding wall must either close 

on itself or extend to infinity in order to separate the lattice into two 

disconnected parts. Some examples of shielding walls on a square lattice. 
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for random dimer, linear and bent trimer, and square tetramer filling are 

shown in Fig. 2. 

Mathematically, shielding is expressed through equality of various 

conditional probabilities and proof follows from observation of 

self-consistency with respect to the Q hierarchy^®^. We do not give 

details here but refer the reader to Ref. (27) for a discussion of the 

random dimer filling case (the treatment for general random N-mer filling 

is more complicated in detail, but the same in spirit). As a simple 

example, for random dimer filling of a square lattice, we have that 

Q n ^ Q n . (3.1) 
# * 

(where the dots indicate an infinite string of ' sites) and thus expect 

the difference between corresponding Q's with finite segments of shielding 

wall, e.g., Q and Q , to be "relatively small". (This will be verified 

later.) 

B. Hierarchial Truncation Schemes 

For random N-mer filling of ID lattices, the shielding property 

described above and, in particular, the equality for m > N-1, 

enables exact truncation and solution of the hierarchy equations^^'^^. 

This, however, is not the case in 2D. 
( 5 )  

For random dimer filling on 2D lattices, Vette et ^ ' proposed a 

series of (nf^-shell) truncation schemes wherein one obtains from the 

hierarchy for Q's with a single 'o' site, a closed set of equations for a 
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Figure 2: Shielding walls for random filling on a square lattice (a) 

dimers, (b) linear trimers, (c) bent trimers and square 

tetramers, which shield site j from the influence of k and vice 

versa 
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finite subset of these Q's by neglecting ' sites further than n-lattice 

vectors from the single 'o' site. This scheme has also been used for 3D 

lattices^^^). As an example, consider the l^^-shell approximation for 

random dimer filling on a square lattice. Since, here, Qi Q _ + , = ^ » ^0**' ^ 0 0*' 

the second equation in (2.5a) is replaced by 

d/dt :n Qo, = - 1 - 2Q^ (3.2) 

which closes with the first equation. These may be integrated using the 

initial conditions = 1, = 1. An analogous pair of equations for 

and is obtained, in the 1^^-shell approximation, for random dimer 

filling on a lattice with coordination number c > 2, and no closed loops of 

length three (thus excluding, e.g., a 2D triangular lattice). Integration 

of these yields 

c-2 

= c:? [(c-1) Qo ^ • (3-3) 

Since and hence Qi,, is zero at saturation, the 1^^-shell estimate of 
00 0  ̂

c-2 
s 1 ~c~ the saturation value of is • The case of the 

triangular lattice is more complex since Q is also included in the 
A 

1^^-shell equations^^'. 

As the order of the truncation increases, we shall see that the number 

of Q's involved in the minimal closed set increases dramatically. For a 

square lattice, Vette et al. also gave results for 2"^-sheH (a closed set 
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of equations is obtained here for 0 , Q Q Qx. Qx.Qn'^n» 
-0 0* 0** ^ +2* 

results is expected to increase dramatically with increasing order, since 

neglected '* ' sites are further from the 'o' site and may often be obscured 

from the 'o' site by other ' sites. Since separating enpty walls of 

thickness one shield here, this process should be a better candidate for 

truncation, especially at low orders than, say, linear trimer filling 

(requiring a shielding wall of thickness two). We shall use the high order 

truncation results as the basis for a detailed analysis of the shielding 

propensity of finite sections of shielding wall. Finally we remark that 

solutions of the truncated equations exhibit product consistency, i.e., 

satisfy relationships of the form (2.6) (see Ref. (6)). This is important 

since it guarantees that 's can be reconstructed uniquely as products of 

these 's (cf. (2.7)). 

For random N-mer filling, there is considerable arbitrariness in the 

choice of truncation scheme associated with the appearance of Q's with more 

than one conditioned 'o' site. Two simple choices, which we term severe 

(mild) nf^-order truncations, neglect conditioning ' sites in the Q's 

further than n-lattice vectors from any (all) conditioned 'o' sites. Thus 

for a square lattice in the 2"^^order, 

Q ) and for a simplified 3^^-shell truncation (neglecting any disconnected 
n  
' sites after truncation). Here we give the more accurate (full) 

sT^-shell, as well as jf^-shell results. The accuracy of truncation 

Q_.. (severe and mild) 
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W' W' ••• * "oo* W 

Q ^ + Qqo^ (severe), Q (mild), etc. . (3.4) 

For linear trimer filling on a square lattice, some examples of severe 

2"^-order equations, following from (2.5b), are 

d/dt Jtn Q_ = - 6Q_. , unchanged from (2.5b) , 
0 

d/dt in Qq* = -

d/dt M Q** = - 1 - Q » - 2Qoo+ 

d/dt in Q ^ = - 2Q ^ - 4Q^ + 2Q 
0$ *$0 8* 

(3.5) 

whereas, in contrast, the mild 2"d-order equations are 

d/dt in QQ and d/dt in are unchanged from (2.5b), 

d/dt M Qow = - Q n - 2Q 
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d/dt tn Q ^ = - 2(Q 
00 

Q ) - 2Q - 4Q„ + 2Q 
loo éSo 

(3.6) 

From (3.4,5,6) we see that the severe truncation does indeed have a more 

severe effect on the hierarchy equations (hence the name). It is also 

apparent that fewer Q's will be included in the minimal closed set for 

severe truncation. Again solutions of the truncated equations exhibit 

product consistency^®). 

Other truncation schemes for random N-mer filling are based on the 

observation that Q's with more than one conditioned 'o' site can be 

factorized as in (2.6). If one first truncates the Q hierarchy severely 

(to nf^-order) and then factorizes to obtain a closed set of equations for 

a finite nimber of Q's with a single 'o' site (the T.nF truncation of Ref. 

(6)), then it is possible to show that the resulting approximate solutions 

do not depend on the choice of factorization. Furthermore they agree with 

the solutions of the corresponding nonfactorized severe truncation 

equations^®). Thus we do not discuss this scheme further. An obvious 

alternative is to start by factorizing Q's with several conditioned 'o' 

sites in (2.5b,c,d) to thus obtain an infinite closed hierarchy for Q's 

with a single conditioned 'o' site. Truncation can then be employed by 

neglecting '(^ ' sites further than n-lattice vectors from the 'o' site, just 

as for random dimer filling (such truncations are referred to as FT.n in 

Ref. (6) and will be described as factorizing here). One shortcoming of 
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this scheme is that the solution depends (presumably weakly) on the choice 

of factorization. For example, if n = 2, 

= %*o* %*-o " ̂ wo* %-o = \o * 

after truncation, and since, e.g., (Q...)2 and Q.Q. . are not equal for Am W 

exact Q's, solutions of the truncated equations associated with these 

particular choices will differ. It is important to use a consistent 

factorization procedure (where a particular Q is always factorized in the 

same way) since one can then show that the solutions of the truncated 

equations still exhibit product consistency^®^. The details of the 

factorization choice used here are described in Appendix A. Examples of 

the factorized and truncated equations with n = 2 (FT.2) for linear trimer 

filling on a square lattice are 

d/dt tn 

d/dt £n = - 2q^ - 2q q^ - 2Q,^^(q^^ - Q^) 

-

d/dt tn q^^ = - 1 - Q - 2q^^ q 

(3.8) 
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In closing this subsection, we remark that the factorized truncation 

scheme does have the advantage of having a smaller minimal closed set of 

equations (at each order) than the corresponding mild (unfactorized) 

truncation (see the next section). 

C. A Refined Truncation Scheme for Random Dimer Filling 

Here we exploit the fact that a separating wall of empty sites of 

thickness one shields. In the standard Vette et al. 2^^-shell truncation. 

the difference (L - QL is set identically zero whereas (L -Q^ is 

determined from the truncated equations. However, this is somewhat 

inconsistent with our expectation that, for the corresponding exact Q's, 

the second difference should be slightly smaller since the 'o* site must 

"look" further around the pair of sites in Q (four lattice vectors 

compared with three) to see the third ' site (3^^- and 4^^-shell 

truncation results are consistent with this expectation). Similarly, 

setting Q - Q to zero but evaluating Q - Q , from 2"^-shcll 

truncated equations, is not so much inconsistent as unnecessary, since 

these equations automatically set the second quantity to zero. 

These observations motivate the development of a truncation scheme 

exploiting the shielding propensity of ' sites in a more refined fashion. 

We use the concept of the shortest path between an (exterior) '*' site and 

the single 'o' site which does not cross over other sites, e.g., 3(4) 

for the right most ' site in Q (Q and Q ). In the n^^-order 

truncation, now all ' sites with such a shortest unshielded path of 
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length greater than 'n' are truncated. The slight reduction in accuracy 

from the less severe n^^-shell truncation of Vette et al., for n > 1, is 

expected to be compensated for by the substantial reduction in the number 

of Q's retained in the minimal closed set at each order. Some mathematical 

justification for the use of this shortest unshielded path concept, based 

on the structure of the Q hierarchy equations, is given in Appendix B 

together with an indication of the appropriate extension for random N-mer 

filling. (Here we must clearly take into account the shape and larger size 

of the N-mer in determining path length and the requirement, in some cases, 

of a thicker empty shielding wall.) 
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IV. RESULTS FROM HIERARCHY TRUNCATION 

In this section, we present results for random dimer and trimer 

filling on various 2D lattices, and for random square tetramer filling on a 

square lattice, obtained from implementation of the hierarchial truncation 

procedures discussed in Section III. We are interested in comparison of 

results from various order truncations and in obtaining accurate results 

from truncations of higher order. However, for the cases analyzed here, 

the latter typically involve hundreds, and sometimes thousands, of Q's in 

their minimal closed sets. Consequently, computer routines were written to 

generate, truncate (to various orders), and then numerically integrate 

these coupled sets of Q equations. Here we first give a general discussion 

of results and then concentrate on the random dimer filling case. 

A. General Remarks and Results 

Saturation coverage estimates for the various random filling processes 

considered here are displayed in Table I for various types and orders of 

trunction. The corresponding minimum numbers of Q equations, required to 

close around the Q^= equation after truncation, are also given. One 

observes a dramatic increase in these numbers for higher order truncations. 

As expected, for trimer and tetramer filling, typically at each order the 

severe truncation gives the poorest results (but has the smallest number of 

equations), and the other two truncation schemes exhibit comparable 

accuracy (but the factorizing scheme has fewer equations). The difference 

is most significant for spreadout N-mers (e.g., the linear trimer). A 
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Table I: Saturation Coverage Estimates for Random Dimer and N-mer Filling 
on Different Lattices for Various Orders and Types of Truncation 
(V = Vette et al_., SUP = Shortest Unshielded Path, S = Severe, M 
= Mild, F = Factorizing). The minimum number of equations to 
close the set for each order of truncation is also shown (* 
indicates that one or more Q's "blowup" just before saturation so 
values given are obtained from extrapolation) 

A0S0R8ATE LATTICE TRUNCATION 

SATURATION COVERAGE^""'*®' Equations) 

ORDER 
1st 2nd 3rd 4th 

Dimer 
Square 

Triangular 
Cubic 
Hexagonal 

Triangular Trimer 
Triangular 

Bent Trimer 
Square 

Hexagonal 

Linear Trimer 
Square 

Square Tetramer 
Square 

V 
SUP 

V 
V 
V 

s 
M 
F 
F 

S 
M 
F 

S 
M 
F 

0.88889^^1 0.90215(^1 
0.88889);J 0.90187}*) 
0.91239);) 0.91363);% 
0.91056);J 0.91546)J*' 
0.87500l2) 0.87500l*) 

0.79263(3) 0.79712^^) 

0.90634jl") O.9068[5!5O)* 
0.90357(^*) 0.9064"®®) 

0.87889 (20) 

0.82892(12) 0.8338I(1'3) 
0.80237(8) 0.83415)112) 

0.8343I(1®) 0.83334(59?) 
0.83939(8) 

0.78508 13, 
0.83268 (96) 

0.82653 (9) 
0.8366 (1177)" 

0.73640 
0.73640(3) J3^*'' 

(3) ft 74onA(15) n 7aatl491)* 
0.748171 

0.7480' 
0.7483' 
0.7482 

(17) 0.74835(18°) 

(78)» 0.7482(2010)' 
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measure of the success of our truncation methods is provided by the rapid 

convergence and stabilization of the saturation coverage estimates for 

increasing truncation order. Note that the l^^-order results are given 

only for the mild truncation because, in 1 -order, the more severe 

truncations affect even the equation, leading to unreliable results. 

The most obvious trend in the saturation coverage results is the 

decrease in the saturation coverage (estimates) with increasing N-mer size 

(N), just as observed for the ID linear lattice^^*^*^^^. For random dimer 

filling, we see that the saturation coverage increases as the lattice 

coordination number 'c' increases (from hexagonal to square to triangular 

lattices). This is not surprising since the number of ways that a dimer 

can land on a site (with empty local environment) equals 'c' suggesting 

that this site is more likely to be filled eventually as 'c' increases. In 

terms of our hierarchial equations, this is expressed by 

d/dt P* = - c P*, . (4.1) 

Finally we remark that for Bethe lattices, where exact solution for random 

dimer filling is possible, this trend is also observed (saturation coverage 

values here can be obtained from (3.3) with = 0)^^^^. 

The situation for random N-mer filling is more complex. It is appro

priate here to introduce a generalized coordination number, c^^^, for an 

N-mer, {N}, which gives the number of different ways that the N-mer can 

land covering some site (with empty local environment). For N fixed, we 

expect the saturation coverage to increase with increasing c^^, since 

d/dt PQ = - C(H} . (4.2) 
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where is the probability for an N-mer shaped cluster of sites to be 

empty. We have checked that this is true in an exact treatment of random 

trimer filling on Bethe lattices of coordination number 2(c^^^ = 3), 3(c^^^ 

= 9), and 4(c^|^ = 18) where one has saturation coverages of 0.82365, 

0.83809, and 0.85682 respectively (see Appendix C). However, for 2D 

lattices one observes some anomalous behavior. Consider bent trimer 

filling on hexagonal (c^^ = 9) and square (c^j^ = 12) lattices where one 

has saturation coverages of » 0.839 and » 0.834 respectively. This anomaly 

occurs since, at saturation, empty sites are either isolated or in isolated 

empty pairs on the hexagonal lattice, but can also occur in longer strings 

of empty sites with probability 0.019 (Table II) on a square lattice. The 

latter clearly more than compensates for the influence of the differing 

As mentioned previously, probabilities of various clusters of empty 

sites can be determined as products of Q's (clearly the number of empty 

clusters whose probabilities can be thus determined, without further 

approximation, increases with the order of the truncation). Here we 

consider only P^^ for random dimer filling, and P^^^ for random N-mer, {N}, 

filling which are needed to determine the sticking coefficient behavior as 
M 

functions of coverage or time. Differences P^j^^ - P^ are plotted in Fig. 

3. Probabilities for subconfigurations involving both empty and filled 

sites can be determined from conservation of probability, e.g., on a square 

lattice, P ^ = Pg - 4PQQ + g " g + P g - OF particular 

interest are the probabilities of an isolated empty site, P^ (say), an iso

lated empty pair, (say), and the probabilities, P" (say), that a 
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Table II: Saturation Estimates of Various Quantities for Random N-mer 
Filling, p" denotes the probability for a site to be in a 
cluster of >n empty sites, so Pi = P^ 

SATURATION VALUE ESTIMATES 
SQUARE LATTICE TRUNCATION P 

aga 
P 

agga 
pi P2 P3 

Linear Trimer 2F 0.0437 m " 0.1735 0.1298 
3F 0.0547 0.0148 0.1638 0.1091 0.0499 

Bent Trimer 2F 0.0878 0.1657 0.0779 
3F 0.0882 0.0148 0.1666 0.0784 0.0192 

Square Tetraner 2F 0.0129 0.2518 0.2389 
3F 0.0079 0.0120 0.2518 0.2439 0.1959 
4F 0.0093 0.0114 0.2518 0.2425 0.1969 

HEXAGONAL LATTICE 

'x 

pi P2 P3 

'x 

Bent Trimer 2F 0.0874 0.0244 0.1606 0.0732 0.00 

TRIANGULAR LATTICE pi P2 

Triangular Trimer 2F 0.0421 0.2029 0.1608 
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Figure 3: Coverage dependence of (a) Pqq-Pq for dimer, (b) Pqqq-Pq for 

linear trimer, (c) P -P^ for bent trimer, (d) P -P* for square 
00 00 

tetramer random filling on a square lattice 
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site is in an empty cluster of 'n' or more sites. Clearly pi = + 

P2, P2 = c Pg + P^, where 'c' is the lattice coordination number. 

Saturation values of some of these quantities are presented in Table II for 

several random filling processes. Some examples of other identities which 

hold at saturation are: p2 = 0 for dimer filling; P equals P,, (P,^ ,) 
aA&a aa aooa' 

for linear (bent) trimer filling on a square lattice; P3 = 0 for bent 

trimer filling on a hexagonal lattice. 

B. Detailed Analysis for Random Dimer Filling on a Square Lattice 

The higher order truncation results available here allow a detailed 

and accurate analysis of various features of this process which are 

expected to be indicative of behavior in iTiore general irreversible 

processes. The difference between the best two estimates of saturation 

coverage is 0.0004, and we shall later give arguments which suggest that 

the exact value is above 0.9068 by no more than ~ 0.0002. In Fig. 4, we 

have plotted some probabilities for small connected empty configurations as 

functions of coverage, and similarly in Figs. 5 and 6, some two-point and 

three-point correlations, respectively. The only significant variation 

between the best two truncations occurs near saturation for the three-point 

correlations (e.g., ~ 10% for c ) where their magnitude is relatively 
0-0 

small. In Fig. 7, we compare 2"^-shell with (essentially exact) higher 

order truncation estimates for various Q's. It is clear that, in the 2"^-

shell, various natural pairs of Q's, e.g., (L.. and Q.., Q . and Q ., are 
oU 0$ 

artificially close (in fact Q and Q are identically equal here as is 
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Figure 4: Coverage dependence of probabilities for several small connected 

empty clusters for random dimer filling on a square lattice 
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Figure 5: Coverage dependence of short separation two-point correlations 
p 

C = P - P_ for random dimer filling on a square 
0—0 0—0 0 

lattice 
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Figure 6; Coverage dependence of three-point correlations 

'=0»,' (,0, Coo, = Pooo - 2Poo% - Po-oPo * K «<=• 
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Figure 7: Comparison of 2"^Lshel1 (dotted line) and 4^^-she11/effective!y 

exact (solid line) behavior of deviations of several 2"^-shell 

Q's from for random dimer filling on a square lattice 
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obvious from the corresponding truncated equations given in Ref. (5)), but 

Fig. 8 illustrating the shielding propensity of strings of three and four 

empty sites. Deviations between "similar" Q's achieve their maximum 

shortly before saturation indicating that, at lower coverages, even severe 

truncations should give accurate results. 

Next we investigate the validity of the principles underlying the 

shortest unshielded path truncation method where it is assumed that the 

influence of a ' site is primarily determined by the length of the 

shortest unshielded path between it and the 'o' site. Thus, using 

gf^-shell truncation results, we naturally compare Qq.-Qq» Q .-Qg., 
' 0$ ' 

the length and number of such shortest unshielded paths between 'o' and the 

additional '*' are given by the (length, number) pairs (1,1), (2,1), (3,1), 

(4,2), (4,1), (5,2), (5,1), (6,2) •••, respectively. As anticipated, there 

is (roughly speaking) a monotonie decrease in the maximum magnitude of 

these differences (see Table III). An exact assessment of the influence of 

any ' site, must of course sum contributions from all unshielded paths 

between it and the 'o' site, but the above results indicate that the 

dominant influence is associated with the shortest such patn(s). 

It is also possible to give simple physical arguments explaining 

whether each additional connected ' site increases or decreases the value 

of those Q's with a single 'o' site and connected cluster of ' sites. 

in 3*"^- and higher-order truncations these differences become larger and 

stabilize. The 4^^-shell estimates of various other Q's are plotted in 

9 • where 
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Figure 8: Shielding propensity for strings of three and four shielding 

sites: differences in corresponding pairs of Q's as functions 

of the Q with the fewer conditioning sites 



www.manaraa.com

Table III: Crude Estimate of Maximum Change In Magnitude for Q's with a 

single 'o' site from adding a ' site with various lengths 

(and numbers) of shortest unshielded paths from the 'o' site 

for random dimer filling on a square lattice (4*^-shell 

results were used) 

Length{number) of 

Shortest Uhshlelded Paths (1,1) (2,1) (3,1) 

(4.2) 

(4.1) 

(5,2) 

(5.1) 

(6,2) 

(6,1) 

(7,2) 

(7,1) 

(8,2) (9,2) 

Maximum Magnitude 

of Q-Dev1at1on 0.12 0.045 0.02 

0.015 

0.005 

0.007 

0.0025 

0.002 

0.0011 

0.00065 

0.00045 

0.0004 0.0001 
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These, of course, all have initial values of unity and saturation values of 

zero (except ing Q^).  We f i rst  observe, from Fig. 4, that = 1 -  0 

for all but high coverages. TTiis follows since the given empty site in Q 

means there are only three instead of four ways that a dimer could land on 

the '0' site (Note that the hierarchy equations imply d/de = -3/4 when 

0=0). However, near saturation it becomes increasingly likely that sites 

around will be filled and, in fact, + 0 whereas ->• 0.093. In 

Table IV, we indicate whether values of various Q's are increased or 

decreased by additional ' sites. Comparing with Q^, we anticipate 

that the additional site enhances the probability of a dimer landing 

adjacent to * (see Table IV), thus filling the '0 '  site and lowering Q ^ 
» 0$ 

cf. Q_. Similarly the additional ' site in Q ^ cf. Q . should enhance 
«» o| ot 

the probability of a dimer landing adjacent to the top | pair, reducing the 

number of ways that the '0' site can be filled and thus increasing Q , cf. 

4 
Q .. Thus, in general, additional sites enhance probabilities for 
4 

certain dimer fillings (various examples are shown in the Table) which 

either inhibit or enhance the probability for the '0' site to be empty. In 

summary we can say that: additional *(t' sites increase (decrease) the Q 

value for a corresponding shortest unshielded path of odd (even) length. 

We can now give a reasonable explanation for the observed monotonie 

increase in saturation coverage estimates (to the exact value) with 

increasing truncation order. First we recall the form of the Q hierarchy 

equations (2.5a), in particular. 
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Table IV: Magnitude Relationships between Q's and Enhanced Configurations 

due to Additional Sites 

^"4 

Q * < Q  
0$ 

4-i-

?r-
I 

• -

Q * > Q * 

4 

Q * < Q 
- •—•— 

Q A> Q. 
0| o|^ tt 
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d/dt tn (4.3a) 

d/dt in = . 1 . 4Q^ . 2%,,, + 4q^ (4.3b) 

d/dt tn Q , = - 1 - 2(q , - Q^) - 2(q^^ - - 2((^2 - q^^) - 2q^ 

(4.3c) 

In the l^^-shell truncation, Q ^ and in (4.3b) are replaced by the 
4 

larger Q^, so d/dt tn Q_ is more negative and therefore Q_. decreases to Oy 0<p O9 

zero faster than the or higher-shell truncation or exact values. 

Consequently the saturation coverage estimate is lower since the source 

term in (4.3a), driving to decrease, is reduced in magnitude. In the 

2"^-shell truncation Q ^ is replaced by the smaller Qq^^» and by the 

smaller Q , so in (4.3c), d/dt in Q is less negative and therefore Q 

l^d is larger than the 3 - and higher-shell truncation or exact values 

(2"^-shell truncation has the same effect on (^^^). Consequently here d/dt 

pd 
tn is still more negative than the 3 - and higher-shell truncations or 

its exact value, so the saturation coverage estimate is correspondingly 

lower (but, from the above analysis, higher than the 1^^-shell). This 

argument extends in the obvious way to suggest that the n^^-shell 

saturation coverage estimate is lower than the (n+l)^^-shell and exact 

values. 
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V. ISOMORPHIC FILLING PROCESSES 

Consider first the random (dissociative) dimer filling of diagonally-

nearest-neighbor sites on a square lattice (with both NE-SW and NW-SE 

orientation). Such a process has been considered by Fuller et in 

the context of water sorption on metal oxides, i.e., hydroxylation. It is 

clear that this process decomposes into two completely independent dimer 

filling processes on the ± sublattices shown in Fig. 9. Since each of 

these is a ir/4-rotated square lattice, each of the independent subprocesses 

is equivalent to horizontal/vertical dimer filling of nearest-neighbor 

sites on a square lattice discussed previously in great detail. Thus, 

e.g., the saturation coverage for diagonal filling equals that for 

horizontal/vertical filling. Furthermore if represents a 

subconfiguration of sites entirely on the ± sublattice, then P^ ^ ^ = 

P P , e.g., P = P = P P = P 2 FOR diagonal filling and each of 
£+ £_ 00 o+o_ 0+ o_ 0 '  ^ ^ 

P can be determined from corresponding quantities for horizontal/vertical 

dimer filling. This factorization property is self-evident in the 

hierarchical rate equations for diagonal filling. If one continues to 

consider the corresponding (dissociative) diagonal filling of linear and 

bent trimers, square tetramers, etc., on a square lattice, one finds a 

decomposition into independent filling processes on the same ± sublattices 

as shown in Fig. 9, where again each of these independent subprocesses is 

equivalent to the corresponding horizontal/vertical filling process on a 

square lattice described previously. 
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Figure 9: Independent ± sublattices associated with diagonal dimer 

filling 
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Another class of isomorphisms can be demonstrated by simply comparing 

different descriptions of the same process. From Fig. 10, we see that 

random filling of a hexagonal lattice by hexagonal hexamers is equivalent 

to monomer filling of a triangular lattice with nearest-neighbor blocking 

(i.e., the monomer cannot land at a site which has one or more occupied 

nearest neighbor). Similarly from Fig. 11, one can see that random square 

tetramer filling of a square lattice is equivalent to monomer filling of a 

square lattice with both nearest-neighbor and diagonal nearest-neighbor 

blocking. Other more complex examples of such isomorphisms can, of course, 

be given. In previous work^^*®\ the description of N-mer filling used 

here (where each N-mer fills N lattice sites) was termed the "atomic 

lattice" picture. The alternative description where an adsorbing species 

is represented by the filling of a single site on a "dual lattice" (cf. 

Figs. 10 and 11) was termed the "event lattice" picture. The latter in 

general contains more information^®^ since, e.g., knowing which sites are 

filled for dimer filling on a square lattice does not necessarily tell us 

where the dimers landed. 
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Figure 10: Equivalence of filling of hexagonal hexamers on a hexagonal 

(atomic) lattice and monomers with nearest-neighbor blocking on 

a triangular (event) lattice 
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Figure 11: Equivalence of filling of a square tetramer on a square 

(atomic) lattice and monomers with nearest-neighbor and 

diagonal nearest-neighbor blocking on a square (event) 

lattice 
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VI. CONCLUSIONS AND EXTENSIONS 

For random dimer or Nnner filling of infinite 2D lattices, we have 

demonstrated that the hierarchial truncation techniques presented here can 

produce accurate estimates of the time or coverage dependence of 

probabilities for various small subconfigurations including saturation 

coverage estimates. For random dimer filling, our results should be 

compared with those of several Monte Carlo simulations listed in Table V. 

By extending Vette et ^.'s analysis to generate the most extensive and 

accurate results available for this process, we have provided sufficient 

insight into the underlying structure to motivate and justify a "shortest 

unshielded path" truncation procedure. This has ramifications for general 

irreversible cooperative processes. Our analysis of various random trimer 

filling processes is the first available. Results should be most accurate 

for a bent trimer (and square tetramer) on a square lattice and a 

triangular trimer on a triangular lattice, where a shielding wall thickness 

of one suffices, and for a bent trimer on a hexagonal lattice whose "large" 

loops make it "Bethe lattice like". Results for the linear trimer on a 

square lattice, requiring a shielding wall thickness of two, should be less 

accurate. For random square tetramer filling of a square lattice, 

Monte Carlo simulation of Solomon^^^^on a 100 x 100 lattice obtained a 

saturation coverage estimate of 0.7468 compared with our best estimate of 

0.7482 ± 0.0002, and the generalized Palasti conjecture value of (l-e~2)2 ~ 

0.74765. In later work, we will provide our own more extensive Monte Carlo 

simulation results for most of these processes. 
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Table V: Estimates of Saturation Coverage for Random Dimer Filling 

on a Square Lattice from Various Monte Carlo Simulations 

with Cyclic Lattice Boundary Conditions [cf. our best 

estimate for an infinite lattice of slightly (no more than 

~ 0.0002) above 0.9068] 

LATTICE SIZE NUMBER OF AVERAGE SATURATION STANDARD REF. 

SIMULATIONS COVERAGE DEVIATION 

10x10 unknown 0.90 0.024 12c 

100x100 201 0.9085 0.0025 12b 

22x22 100 0.9049 0.0102 15 

30x30 100 0.9066 0.0092 15 

36x36 100 0.9066 0.0076 15 
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In all of the above, the treatment discussed centers on determination 

of probabilities for small compact empty subconfigurations, which do not 

provide us with information as to, e.g., the large separation behavior of 

the two-point correlations. Determination of the latter involves 

consideration and appropriate treatment of further hierarchial rate 

equations which couple back to the minimal set for connected empty 

subconfigurations analyzed here. Some limited development along these 

lines, for random dimer filling on a square lattice, can be found in Ref. 

(22) .  

Treatment of many physical processes leads to several natural 

extensions of the models presented here. We can consider the irreversible 

coadsorption of various dimer and N-mer species^^^^. If one is interested 

in a statistical treatment describing only which sites are filled and empty 

(rather than which species fill the various sites) then, for random filling 

(only), again one obtains a closed hierarchy for probabilities of connected 

clusters of empty sites which can be straightforwardly treated by the 

methods presented here^^®*^^^. Epstein has discussed the analogous ID 

processes. Partial coverages can be obtained simply by adding the 

appropriate rate equations which close with this set^^®^. A further 

natural extension is to cases where there are several types of sites, e.g., 

periodic lattices or lattices with a stochastic distribution of "inactive" 

nonadsorptive sites^^^^. Application of our analytic methods to such 

extended models provides a powerful tool for treating, e.g., competitive o-

and g-CO on binary alloy surfaces (for which Monte Carlo simulations have 

been performed recently^^®^). 
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Finally we comment on a rather subtle variation of the dimer filling 

problem which we characterize as "end-on dimer filling". We describe only 

the random filling case here. Instead of randomly sampling pairs of empty 

sites on which to adsorb (as in the model treated above), one could 

randomly sample single empty sites (with one end of the dimer), testing to 

see If any adjacent sites are empty. Then if this is the case, one of 

these is picked at random and the other end of the dimer attached (at which 

point the dimer becomes irreversibly adsorbed), and if not, the dimer 

desorbs. In later work we detail the statistical differences between these 

dimer filling models (which seem not to have been appreciated in previous 

treatments). 
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APPENDIX A: FACTORIZING TRUNCATION SCHEMES 

The choice of factorization for Q's with several conditioned 'o' sites 

used in the nf^-order factorizing (FT.n) truncation scheme is briefly 

described here. Consider first Q's which have one or more sites 

further than n-lattice vectors from at least one 'o' site (and so are 

affected by truncation). We choose the factorization in which the 'o' site 

with the most (truncated) ' sites greater than n-lattice vectors from it 

is in the Q with the most sites, e.g., in the sT^-order, 

rather than 

This choice creates an additional site near the 'o' site with the most 

truncated '*' sites, thus maximizing shielding from these. If two or more 

'o' sites have the same (maximum) number of '*' sites greater than 

n-lattice vectors from them, then the 'o' in the largest Q is chosen as the 

one with the most ' sites at distance n+1 (or if this does not 

distinguish between the 'o' sites, then at distance n+2, and so on). For 

example, in the 2"^-order, 
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CL . = QL . Q. 

14 1*1 
rather than Q 

l$| 
Q 

+ Q. 

*# I* • 

If none of these rules distinguish between 'o' sites, then we factorize in 

an arbitrary, but consistent, fashion. 

For other Q's (where no '*' sites are truncated), the choice of 

factorization does not affect the solution. For if two different choices 

are made and the resulting truncated sets of equations extended, if 

necessary, to include the same Q's, then the only difference between the 

two sets is that different but "compatible" products of Q's appear in some 

places (i.e., these products are equal for exact Q's). It then follows 

that solutions of the two sets will agree by virtue of product consistency 

(cf. Réf. 6). For completeness, we give the following examples of the 

choice, written into our computer routine, for 3 - or higher-order 

truncation: 

Qoo* - Go*' 0 = Q ° , Q =0 0 
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APPENDIX B: THE SHORTEST UNSHIELDED PATH 

We first analyze the source of the difference between Q and Q 

for random dimer filling on a 2D square lattice. This will substantiate 

the appropriateness of our concept of the shortest unshielded path and 

definition of its length in determining the influence of the bottom ' 

site in the first Q. One has from (2.4), 

- d/dt AnQ„ -1=(Q„ - Q ^ ) + 2(2Q„^ - Q„ ) 

d/dt tn Q n - 1 = (0 - Q „ ) + 2(2Q„^ - Q„ ) 

The differences between (81) and (82) values for corresponding terms 

on the r.h.s. are given by: 

5^*^ and 1^^ terms : (Q^ - Q  ) _ ( Q  -  Q )  

1^ +1* 
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(1/2)4^*' [2"d] terms: [2] ) - (Q. " Qn ) 
9$+ 

terms: 

Clearly the 5^^ and terms contribute less than the 4^^ and 2"^ wnere 

the 'o' site is closer to the additional site. In the 3 terms, the 

'o' site is even closer to the additional '*' site(s) but we have a second-

order rather than first-order difference in Q's and thus anticipate that 

the contribution will be of the same order as from the 2^^ and 4^^ terms. 

This is verified from high-order truncation results. (The generalization 

of this argument requires that a (first-order) difference in Q's with the 

additional ' site at shortest unshielded path (s.u.p.) distance 2N is of 

the same order as a second-order difference in Q's with additional 

site(s) at s.u.p. distance N.) 

Thus in analyzing the difference between Q and Q , we are 

naturally lead to consider the difference between corresponding Q's 

associated with the and terms. Here we consider only the 

former, which is easier to analyze, and thus to compare Q with Q^^ (and 
p* 

with (L ). The rate equations for these display a similar, but 

somewhat less precise, correspondence of terms and, for the former. 
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motivate us to compare (L.. with CL., . These in turn motivate us to us to compare (L^. with CL^. . 
II* 

compare Q... with Q^.. , and then Q with Q._ where a somewhat weaker 
#1* HU &$$* 

correspondence of terms can still be made. However, when naturally 

continuing to compare Q.with Qi , one observes a fundamental struc-
1* 

tural difference in the rate equations, i.e.. 

-d/dt in = 3 + •••, d/dt in Q = 2 + ••• (B3) 

h 

This substantial difference is propagated back through the coupled sequence 

of six pairs of Q's (as the 'o' site travels around the shielding wall 

segment **$) to cause deviation between Q and Q . Compatibility with 

our choice of corresponding shortest unshielded path length of six should 

be clear. 

Similarly one could consider equations for these Q's for random bent 

trimer and square tetramer filling. Here one "gets around" the end of the 

shielding wall segment *** with fewer steps (couplings) and hence obtains 

lower shortest unshielded path length values. Finally for random linear 

trimer filling (where the wall segment *** is not thick enough to shield), 

one has a substantial difference in structure in the Q and Q 

equations, i.e., 

- d/dt in Q = 1 + (Q - Q - ) + ••• 
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- d/dt tn Q = (Q ^ - Q q ) + ••• 
+# 

giving a corresponding shortest unshielded path length of one. 
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APPENDIX C: RANDOM TRIMER FILLING ON BETHE LATTICES 

It is possible to obtain exact solutions (and thus, e.g., saturation 

coverage values) for random ditner and N-mer filling of Bethe lattices^^^^. 

This provides a useful intuitive tool for analyzing trends in corresponding 

processes on physical lattices. For random dimer filling on physical 

lattices with no closed loops of length three (so excluding, e.g., the 

triangular lattice), it has been shown that the 1^^-shell truncation 

solutions correspond to the exact solution for random dimer filling on a 

Bethe lattice of the same coordination number^^*). In fact this 

correspondence has been used as the basis for resummation of corresponding 

formal coverage expansions^®*^^^. 

In considering random trimer filling of Bethe lattices, we note first 

that all connected triples of sites are equivalent for a Betne lattice of 

(arbitrary) coordination number c. Thus we expect that random trimer 

filling on a Bethe lattice with c=3 and a hexagonal lattice should exhibit 

certain similarities (these have the same generalized coordination number 

for trimer filling). However, random trimer filling on a Bethe lattice 

with c=4 in a sense corresponds to simultaneous random linear and bent 

trimer filling of a square lattice (the generalized coordination number for 

the former is tne sum of those for the latter). The procedure of Ref. (24) 

leads straightforwardly to the following exact closed sets of equations for 

random trimer filling of a Bethe lattice with 

A. c=3 

d/dt ^ = - «"oo 
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d/dt Poo = - ""oo V ^ ^ 
% 

"  Qow '  -1 -  %• 

d/dt „ = - 2 . 20^ . (,^^,a . 

B. c=4 

d/dt P„ = - 18P„„ Q,^ 

"/"t P.0 ' - Poo Qo** (« + !%• + 

d/dt tn q = - 1 - 4Q - 6q Q . - Q . Q 
"•• o| o| o| 0** 

d/dt .n q . = - 2 - 3q - 3q^^ - q 

d/dt »" V ' - 3 - %* - '<%)' - 30»** q 

Saturation coverage values are simply obtained from integration of these 

equations. 
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ABSTRACT 

An analytic treatment of competitive, irreversible (immobile) random 

one-, two-, three-, ... point adsorption (or monomer, dimer, trimer, ... 

filling) on infinite, uniform 2D lattices is provided by applying 

previously developed truncation schemes to the hierarchial form of the 

appropriate master equations. The behavior of these processes for two 

competing species is displayed by plotting families of "filling 

trajectories" in the partial-coverage plane for various ratios of 

adsorption rates. The time or coverage dependence of various subcon

figuration probabilities can also be analyzed. For processes where no 

one-point (monomer) adsorption occurs, the lattice cannot fill completely; 

accurate estimates of the total (and partial) saturation coverages can be 

obtained. 
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I. INTRODUCTION 

Irreversible immobile adsorption or reaction at specific sites on a ID 

polymer chain, or 2D substrate has been modeled as the irreversible 

(immobile) filling of either single sites, or pairs, or triples, ... of 

sites on a lattice. In general such processes are cooperative, i.e., the 

adsorption rates depend on the state of sites surrounding those being 

filled. These rates are the input to the master equations which are 

naturally recast in hierarchial form for processes on infinite lattices (of 

interest here)^^^. In ID, exact results are available for all such random 

filling processes as well as a variety of cooperative processes. The 

same is true for Bethe latticesand other branching media. Except for 

random and "almost random" filling^^'^^, no exact closed form solutions are 

available for processes on 2D lattices^^^. However formal coverage 

(density) expansions for subconfiguration probabilities are always 

available^^). In this work, we shall exploit a recent analysis, via 

approximate hierarchial truncation to various orders, of the random filling 

of pairs, or of certain triples, or 4-tuples of sites on various infinite 

20 latticesEven for these simple random filling processes, the 

occupation statistics are nontrivial, the most obvious indication here 

being that the lattice is not completely filled at saturation. 

Here we consider processes involving competitive, irreversible 

(immobile) filling of single sites and/or pairs, triples, ... of lattice 

sites. Physically this could correspond to irreversible coadsorption of 

several different molecular species or, alternatively, adsorption of a 

single type of molecule with different binding configurations. The latter 
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is proposed for CO adsorption on several metal surfaces. This process 

involves competition between two-point binding of g-CO at pairs of sites 

and one-point binding of o-CO at single sites^^^. Other examples can be 

cited. For unification, here we shall describe such processes in terms of 

competitive adsorption of monomers, dimers, trimers, (i.e., of various 

N-mers). Here the term, N-mer, indicates the number (N) of lattice sites 

filled by this adsorbing species, rather than the number of atoms contained 

therein. 

A hierarchy of rate equations for the probabilities, P^, of various 

subconfigurations of sites, e, specified filled and/or empty, can be 

w r i t t e n  d o w n  i n t u i t i v e l y  e v e n  f o r  s u c h  c o o p e r a t i v e  p r o c e s s e s I n  

these subconfigurations, we must, in general, specify which species occupy 

the various filled sites. Here we note that the following fundamental 

shielding property is embedded in these equations^^^: suppose that a wall 

of empty sites separates the lattice into two disconnected regions, and is 

sufficiently thick that any event on the lattice is not simultaneously 

affected by (the state of) sites on both sides; then sites on one side are 

shielded from the effect of those on the other. Proof is via self-

consistency with the hierarchial equations^^*^^. This property leads to 

exact truncation and solution of the hierarchy for various competitive, 

irreversible, random and cooperative processes on ID lattices(as well 

as on Bethe lattices and other branching media), and motivates our 

approximate hierarchial truncation procedures in 2D. 

A significant simplification in these hierarchial equations occurs if 

the adsorption rates depend at most on whether the influencing sites are 
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filled or empty, and not on the particular species adsorbed there^®*®^. 

Here one can obtain a closed subhierarchy for probabilities of various 

subconfigurations of empty sites, using conservation of probability (just 

as for adsorption of a single type of species). One such important case, 

to which we restrict our attention henceforth, is the competitive, 

irreversible, immobile, random filling of monomers, dimers, tri mers, ••• . 

Furthermore, we shall consider only infinite, uniform lattices, which are 

initially empty, so that subconfiguration probabilities are invariant under 

all space group operations on the lattice, including translation. It has 

been observed previously that, in ID, these simpler equations are readily 

amenable to exact solution^®*^^ (again by virtue of the above mentioned 

shielding property), so here we concentrate on the 2D case. 

The general form of the hierarchial rate equations, appropriate to 

these processes, is presented in Section II, together with a brief 

discussion of the hierarchial truncation procedure. Results for a variety 

of competitive, irreversible, random filling processes, concentrating on 

the "filling trajectories" characterizing partial-coverage behavior, are 

presented in Section III. The special case of competitive random filling 

of two distinct dimer species is described in Section IV, and some 

concluding remarks are given in Section V. 
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II. HIERARCHIAL RATE EQUATIONS AND THEIR TRUNCATION 

Here we consider competitive, random filling of a mixture of monomers 

(m), dimers (d), various trimers (e.g., linear (it) and bent (bt) trimers 

on a square lattice), ••• with rates c^t* respectively. 

In general, we refer to an N-mer species 's' (with N=Ng) adsorbing with 

rate k^, where le^ dt denotes the probability of filling a specific 

's'-shaped cluster of sites prescribed empty in an (infinitesimal) time 

interval dt. If {n}^ denotes a subconfiguration of 'n' empty sites, {n}, 

and P. - the corresponding probability, then one can write 
0 

d/dt ' - 'n, ''d "Jn) " \t % ' 

Here the quantity takes account, through a sum over appropriate empty 

subconfiguration probabilities, of all possible ways that an adsorbing 

species 's' can destroy {n}^ by landing completely within or partly 

overlapping {n}. Specifically one has 

^n} " " ''{n}^ ' (2-2a) 

°{n) ' "{m} "(n), * "3,{n} 
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where n . is the number of pairs of adjacent sites in {n} and = 

" j + { n }  "  " [ n } ( s e e  R e f .  ( 6 )  f o r  f o r  a  g e n e r a l  N - m e r  s p e c i e s  ' s ' ) .  

Modification to include several distinct monomer species, dimer species, 

. is straightforward and, in fact, (2.1) can still be used if jc^, ••• 

are reinterpreted as the suns of adsorption rates for all monomers, dimers, 

••• respectively. 

Our truncation procedure, however, operates directly on the 

conditional probabilities Q. . . =P. _ . /P.. for the (conditioned) 
Jo't 'o '^o" ̂ 0 t"'o 

site 'j' to be empty given that the (conditioning) sites in {n} are empty. 

These satisfy equations of the form 

° -'m '^,{n) - "d "!{•>} " - — • (2.3) 

where 

^,{n} " G%^{n}/PjQ+{n}Q " ^ » (2.4a) 

~ °j+{n}/PjQ+{n}Q " °{n}^''{n}Q 

^ " k4jl{n} "k'j+{"} \'jo+("}o • ' 

(2.4b) 
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The R? J. . for trimer, tetramer, ... species 's' are more complex, 

involving products of Q's, and are described in detail elsewhere^®Our 

n^^-shell (or nf^-order) truncation procedure operates directly on the 

r.h.s. of these by neglecting conditioning sites further than 'n' lattice 

vectors from the conditioned site, thus obtaining a closed set of equations 

for a finite subset of Q's. We thus take advantage of the shielding pro

pensity of closer empty conditioning sites. (On ID and Bethe lattices, and 

on more general branching media, this procedure, suitably implemented, 

produces exact results). 

As mentioned in the Introduction, we consider here only adsorption on 

infinite, uniform, initially empty lattices. Consequently the 

subconfiguration probabilities are invariant under all lattice space group 

operations, and {n}^, in , is naturally interpreted as representing a 

class of subconfigurations related by space group operations. Since, in 

particular, probabilities are transiationally invariant, in the following 

we use the obvious notation P„, PL.., ... to denote probabilities of 
0 00 000 

an anpty site, adjacent pair of sites, linear triple of sites (e.g., on a 

square lattice), respectively. Thus e = l-P^ gives the lattice 

coverage. 

In our previous treatment of the random filling of single types of 

N-mer species, computer routines were written to generate the R^. . . and 
J >1 

apply truncation to various orders. This allowed treatment and comparison 

of various orders of truncation where many coupled Q equations are 
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involved. It should be clear that treatment of competitive random filling 

involves simple combination of these individual routines (for each order of 

truncation). In general, more Q's will be required to close the set of 

truncated equations, at each order, than for the random filling of any of 

the individual species. Modification to consider competitive random 

filling of monomers with a single type of N-mer species is particularly 

simple since R? . .=1, for all {n}. The numerical results presented in the 

next section follow from estimates of probabilities of empty subconfigura

tions obtained via these truncation procedures. 

For competitive adsorption, knowledge of probabilities of empty 

subconfigurations only provides limited information about the distribution 

of adsorbed species (in contrast to single species adsorption). For 

example, partial coverages e^, 9^, 8^^, for monomers, dimers, linear 

trimers (for an appropriate lattice), •••, which satisfy 8 = 8^ + Gj + 9^^^ 

+ •••, are not included. However, the partial coverage, 9^, for any N-mer 

species 's', adsorbing with rate can be simply determined by integrat

ing the additional equation 

d/dt 8g = , where = c^P^ . (2.5) 

Here is the probability of an 's'-shaped subconfiguration of empty 

sites, and the "generalized coordination number", c^, for the species 's', 

gives the number of ways that this species can be placed on the lattice to 

cover a particular site. Thus, in particular, c^ = 1, and c^ = c, the 

standard lattice coordination number. On a square lattice, for example. 
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one has 

it It 000 * 

9 (2.6) 

where 'sq' denotes square tetramers,and Cj=4, c^^=6, 0^^=12, and . 

It is important to note that, provided the truncation scheme does not 

affect the d/dt equation, we are guaranteed that the truncation 

s o l u t i o n s  s a t i s f y  t h e  " c o n s e r v a t i o n  o f  p r o b a b i l i t y "  c o n d i t i o n  l - P ^  =  9 = 0 ^  

Since the probabilities on the r.h.s. of (2.5,6) equal unity when t=0, 

we have that 0^ ~ Kg^^t, as t+0, and so for two species 's' and 's*', one 

has that 05/85* " (*sfs)/(*s*^s*)' ^ t+0. This motivates introduction of 

the modified rates 

where K^dt gives the probability that the species 's' will adsorb covering 

some particular site, with local environment prescribed empty, in an 

(infinitesimal) time interval dt (so 85/85* 1» as t+0, when = K^*). 

These rates will be used later in presenting results. The enhancement of 

K over K by a factor of c (or of over 9_, as t+0, when = k) 
s s s s m s m 

occurs since there are c^ ways that a species 's' can adsorb covering any 

site (with empty local environment). Often one can write c^ = (for an 

+  8  J  +  • • •  .  
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N-mer 's' with N = N^), and interpret as the number of different 

orientations that the species 's' can assume on the lattice [e.g., on a 

square lattice, Vj=2, (horizontal and vertical), V|j^=4 and ^^^=1]. 

This equality reflects the fact that any of the atoms of the N^-mer 's' 

can fill a particular site, and that this filling can occur via differ

ently oriented processes (e.g., horizontal and vertical for dimers and 

linear trimers on a square lattice). Note that this decomposition is not 

always appropriate since can be nonintegral, e.g., Vj = c/2 equals 3/2 

for a hexagonal lattice. 

Determination of probabilities of more general subconfigurations 

involving sites specified filled with various species is more complicated. 

Consider, for example, competitive random filling of monomers o»m (with 

rate k^), and dimers oo+dd (with rate c^), at the sites of a square 

lattice. To determine the probability of an adjacent m-filled and empty 

site, P^, we must consider the infinite coupled set of equations 

(exploiting all lattice symmetries), 

d/dt ""mo = "mCoo ' 'J " • 

^moo ~ *m(^ooo " ^ ^moo) ' ̂d^^moo ^ ^mooo ^ ^ ^''moS^ * 

:  (2.8)  

for probabilities of subconfigurations with a single m-filled site adjacent 

to all possible connected clusters of empty sites. A natural 2"^-order 
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truncation (measuring distance from the m-filled site) of these equations 

would, for example, make the approximation 

^mooo ~ ^**^000 " ^*^000 " ^moo^ooo^^oo * (2.9) 

where ' denote empty conditioning sites. A similar set of equations must 

be considered when determining, e.g., More generally, rate equations 

for probabilities of subconfigurations involving a number of filled sites 

couple to P's for configurations with one or more of the filled sites 

replaced by empty sites, and to P's for configurations with the same set of 

filled sites but more empty sites. For example 

"Z"' '^0 - SCodo - Pw.) * - ''mdo. - 2"^;) ' 

Systematic estimation of such quantities from sufficiently high order 

truncation approximations is clearly possible. Analogous ran arks can be 

made regarding the estimation of probabilities of subconfigurations 

involving sites specified filled with various species for more general 

random competitive filling processes. Such an example is presented in 

Section IV, where a modified version of this truncation procedure is 

illustrated for the special case of competitive random filling of two 

distinct dimer species. 
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III. RESULTS FOR COMPETITIVE RANDOM FILLING OF DIFFERENT SPECIES 

We first consider several irreversible, random filling processes 

involving just two distinct species, 's' and 's*', say. The process is 

naturally described by a "filling trajectory" in the (e^, partial 

coverage plane. We assume that the lattice is initially empty so that this 

trajectory starts at the origin and is confined, in the positive quadrant, 

to the triangle 0 < e = + 8^* < 1. It is natural to generate a 

continuous one-parameter family of such trajectories by varying the ratio 

of the adsorption rates, K^/Kg*, for the two species. The nontrivial 

trajectory curves presented in this section should be contrasted with those 

from "standard" treatments of the kinetics of 1 -order competitive proc

e s s e s  ( w h i c h  c o r r e s p o n d  t o  c o m p e t i t i v e  r a n d o m  m o n o m e r  f i l l i n g ) T h e r e  

trajectories are trivially straight lines with slopes given by the rate 

ratios. 

Results for processes where a monomer is involved (so the lattice 

fills completely) are very accurate since we have used, here, the 

previously generated R^ . . of high (3^^-) order for the appropriate 

competing species. For competitive, random monomer and dimer filling, we 

show in Fig. 1, filling trajectories for both hexagonal and square 

lattices. These are naturally compared with the exact filling trajectories 

for the corresponding processes on Bethe lattices of coordination numbers 

c=3 and 4, respectively. The latter coincide, here, with 1 -order 

truncation results for the physical lattices, and differ little from 

higher-order (and exact) physical lattice behavior. A detailed assessment 
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SQUARE LATTICE (—) 

C=4 BETHE LATTICE (---) 

HEXAGONAL LATTICE (—) 
0 8 

C=3 BETHE LATTICE (---) 0.8 

0.6 0.6 

5/2 
5/2 

0.4 0.4 

1/2 

0.2 0.2 

.1/11 

0.4 ,0.6 0.8 1 0 0 0.2 0.2 0.4 6 0.8 1 

Figure 1; Filling trajectories for competitive, random monomer and dimer 

filling, for various ratios l^/Kj (shown). Results are given 

for hexagonal and square lattices and for the corresponding 

Bethe lattices 
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of the accuracy of our procedures, for the square lattice case, can be 

obtained from Table I where we have shown for various ratios of K /K^, m m d' 

and compared 2"^- and sT^-order results, and also exact results for random 

monomer and dimer filling on a Bethe lattice with c=4, and on a square 

cactus. Accuracy of the 2"^- and 3^^-order truncation results clearly 

increases dramatically with increasing K^/Kj, as might be expected since 

monomer filling contributions to the Q equations are unaffected by 

truncation. (See the Appendix for a presentation of these Bethe lattice 

and square cactus analyses, and a discussion of the correspondence with 

physical lattice behavior.) Corresponding plots for competitive, random 

filling of monomers and either linear trimers, bent trimers, or square 

tetramers, are shown in Fig. 2. 

In Fig. 3, we have shown the filling trajectories for three cases 

where dimers, and one type of N-mer species 's' with N>3, compete randomly 

filling the sites of a square lattice. The 2^'^-order truncation 
c 

approximation was used here. The saturation coverage, 9 (which is less 

than unity), is listed in Table II, for several values of K^/K^. These 

saturation coverages are clearly discontinuous as functions of Ky/K^ at 

zero, since when Kj/K^=0, the process simply involves random N-mer filling, 

but when Kj/Kg=0+, the process continues through an (infinitely slower) 

second stage where dimers randomly fill some of the ranaining empty pairs 

of sites. Note that the saturation coverage for these processes is 

continuous as a function of K^/Kj at zero since, after random dimer filling 

to saturation, there remain only isolated empty sites (on which N-mers 

cannot adsorb). It is particularly interesting to note that the effect of 
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Table I. Monomer saturation coverages, 9^^, for competitive random 

monomer and dimer filling; 1^*-, and sf^-order truncation 

estimates are given for a square lattice, and exact values for a 

square cactus and c=4 Bethe lattice, for various values of 

"Sn/Kd 

Km/Kd 3rd-order 2"d.order Square Cactus Bethe Lattice 
(ist-order) 

0+ 0.093660 0.097853 0.105385 0.111111 

1/10 0.257451 0.258199 0.261223 0.263866 

1/4 0.403483 0.403612 0.404745 0.405806 

1/2 0.545354 0.545371 0.545718 0.546056 

1 0.689318 0.689319 0.689388 0.689455 

5/2 0.839623 0.839623 0.839628 0.839632 
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SQUARE TETRAMER LINEAR TRIMER (— 

BENT TRIMER (---) 0.8 0.8 
MONOMER 

MONOMER 
0.6 0.6 

5/4 
0.4 

1/2 5/3 
2/3 

0.2 1/3 0.2 1/8 
1/20 

1/i 

0 0.2 0.6 0.8 0.4 1 G 0.2 0.4 .0.6 0.8 1 

Figure 2: Filling trajectories for competitive, random filling of monomers 

and N-mer species 's' on a square lattice, for various ratios of 

K^/Ks (shown). The N-mers are either linear or bent trimers, or 

square tetrainers 
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SQUARE TETRANER LINEAR TRIHER (—), 

BENT TRIHER (—) 0.8 0.8 
OLMER 

DIMER 
0.6 0.6 

0.4 0.4 

10/3 
4/3 

0.2 0.2 

0.2 0.4 8_GO,6 0.8 1 1 0 0.8 0.2 0 

Figure 3: Filling trajectories for competitive, random filling of dimers 

and N-mer species 's' on a square lattice, for various ratios of 

Kj/Kg (shown). The N-mers are either linear or bent trimers, or 

square tetramers 
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Table II. Saturation coverages for competitive, random diroer 

and N-mer filling on a square lattice, for various 

values of K^/K^ (from 2"^-order truncation). The 

N-mers are either linear or bent trimers, or square 

tetramers 

Kg/Kj Linear 
Trimer 

Bent 
Trimer 

Square 
Tetramer 

0 0.90215 0.90215 0.90215 

1/5 0.90602 0.90065 0.90564 

1/2 0.91062 0.89935 0.90979 

1 0.91624 0.89843 0.91481 

2 0.92334 0.89827 0.92102 

3 0.92770 0.89871 0.92473 

5 0.93286 0.89980 0.92893 

10 0.93852 0.90171 0.93327 

20 0.94234 0.90347 0.93602 

100 0.94616 0.90560 0.93855 

2000 0.94721 0.90626 0.93923 



www.manaraa.com

102 

adding some N-mer coadsorption to the random dimer filling problem (i.e., 

consider K^/K^ increasing from zero) is to increase the saturation coverage 

for linear trimers and square tetramers, but to initially decrease it for 

bent trimers. We expect that this is because of the relatively high 

probability of isolating empty sites in the "elbow" of the bent trimer (see 

Fig. 4). 

For competitive, random filling on a square lattice of linear and bent 

trimers, and of linear trimers and square tetramers, filling trajectories 

(from 2"^-order truncation) are shown in Fig. 5. Discontinuities in the 

saturation coverage obviously occur at both ends of the (infinite) range of 

rate ratios since, infinitesimally close to either end, two stage filling 

occurs. 

Let us now analyze, in more detail, the limiting rate regimes 

described above where filling occurs in two stages. Since 2^^-order 

truncation is used to analyze these competing processes, for consistency, 

the saturation values quoted below for many quantities, for various single 

species random filling processes, are also taken from 2^^-order analyses 

(detailed in Ref. 6). Limited accuracy is expected especially when linear 

trimers are involved. 

For competitive, random filling of dimers and bent trimers, when 

Kd/Kjjt=0+, bent trimer filling proceeds to coverage -0.834, at which point 

isolated linear strings of empty sites (of length one or more) remain^®^. 

The process then continues with random dimer filling on the empty strings 

of length two or more to coverage «0.906, so the saturation partial 

coverage of dimers is =0.072. For random bent trimer filling, at 
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Figure 4: Isolation of empty sites for competitive, random filling of 

dimers and bent trimers on square lattice 
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SQUARE TETRAHER BENT TRIHER 
0.8 0.8 

INEAR TRIHER LINEAR TRIHER 

0.6 0.6 

O.ii 
3/2 

3/4 

0.2 0.2 

'3/21 1/5 

0.2 

Figure 5: Filling trajectories for competitive, random filling, on a 

square lattice, of linear trimers and bent trimers [square 

tetramers], for various ratios of 
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saturation, the fraction of empty sites in linear strings of length two or 

more is 0.078, of which, the fraction in strings of exactly length two 

(i.e., in isolated empty pairs) is 0.058 (determined, in the 2"^-order, 

using the approximation = '!o»m''ooo ' >îo+/oo'- latter, of 

course, are all filled by dimers. We thus conclude that « S'Sli or -70% of 

the sites in linear empty strings of length three or more are filled. 

Exact calculations for random dimer filling on finite linear lattices 

produce mean saturation coverages of 2/3, 5/6, 4/5 for lengths 3, 4, 5 

respectively and, thereafter, a monotonie increase to infinite length value 

of l-e"2 "86.5%(^^). Thus our results indicate that, of the empty strings 

of length three or more remaining after random bent trimer filling, most 

have length three (which is not unreasonable). 

Similar remarks apply for competitive, random filling of dimers and 

linear trimers when Kj/Kj^^=0+. Random linear trimer filling proceeds to 

coverage «0.827 where isolated empty sites, pairs oo, quadruples 88, and 

staircase configurations o8, o8°, o8^, ••• remain^®^. Random dimer filling 

then continues to a saturation partial coverage of 0.121, filling *93% of 

the available 0.130 sites in empty clusters of two or more sites, including 

all 0.087 in isolated empty pairs (determined, in 2"^-order, using the 

approximation P^^ * Q P^^), and all 0.014 in empty quad

ruples. This implies that ~ O"" ~69% of the sites in empty stair 

cases are filled (which, from the above ID remarks, indicates that most of 

these have length three). For competitive, random dimer and square 

tetramer filling when Kj/Kgq=0+, similar analysis shows that ~80% of the 
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complicated network of nonisolated empty sites (remaining after square 

tetramer filling) are filled by dimers. This seems reasonable. 

For competitive, random filling of bent and linear trimers, a list of 

saturation coverages for various is given in Table III. When 

'Sit^St^** bent trimer filling first occurs to coverage *0.834, and 

then linear trimer filling occurs on remaining 0.020 empty sites in linear 

strings of length three or more. Since most of these strings have length 

three (see above), we anticipate that the (total) saturation coverage 

should be -0.834+0.020=0.854, in reasonable agreement with Table III. When 

Kbt/Kj^t^"*"* random linear trimer filling first occurs to coverage -0.827, 

and then bent trimer filling occurs on the remaining 0.014 empty sites in 

isolated empty quadruples 88, and on the remaining 0.029 sites in empty 

staircases of length three or more. Since most of the latter have length 

three, we anticipate that the (total) saturation coverage should be 

«0.827+3/4x0.014+0.029=0.857 also in reasonable agreement with Table III. 

Finally, to demonstrate the flexibility of our methods, we give 

results for the saturation coverage for a competitive, random filling 

process on a square lattice involving dimers, and both linear and bent 

trimers. In Fig. 6, we have shown the constant saturation coverage 

contours in "rate space". The saturation coverage is continuous at the 

dimer vertex, and along the two edges extending from it (dimer and linear 

trimer filling; dimer and bent trimer filling), but not at the lower edge 

(bent and linear trimer filling) where the extent of discontinuity can be 

determined from Table III. 
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Table III. Saturation coverages, for competitive, random 

linear and bent trimer filling on a square lattice, 

for various values of Kbt^^tt (f^om 2"*-order 

truncation) 

KBT/K&T 
GSAT 

< 0.002 0.86754 

0.02 0.86740 

0.2 0.86567 

0.4 0.86374 

1 0.85985 

2 0.85698 

4 0.85500 

10 0.85367 

20 0.85323 

200 0.85284 

>2000 0.85279 
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D I M E R  

0.900 

10.915 0.935 

0.940 \ 

0.945 V 0.920 

^ENT 

T R I M E R  L I N E A R  T R I M E R  

Figure 6: Constant saturation coverage contours for competitive, random 

filling on a square lattice, of dimers and both bent and linear 

trimers. For any point inside the triangle, the rates for 

various species are in proportion to the distances from that 

point to the edges opposite the appropriate species vertex 
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IV. COMPETITIVE RANDOM FILLING OF TWO DISTINCT DIMER SPECIES 

As mentioned previously, one can straightforwardly derive hierarchial 

equations for irreversible random filling of several monomer species (where 

they are trivial), or several dimer species, or several linear trimer 

species (e.g., on a square lattice), * These processes have the 

simplifying feature that the "filling trajectories" are straight lines with 

slopes determined by the rate ratios. Consider, e.g., random filling of 

two dimer species oo+dd, with rate and oo+d'd', with rate K^,. Clearly 

one has for 8y = P^, 9^, = P^,, 

d/dt = Kj Pqo , d/dt = Kj, Pqo , (4.1) 

so 8j/8y, = Kj/K= Kj/Kj,. Furthermore, we have also indicated that the 

probabilities of empty subconfigurations for this process are identical to 

those for random filling of a single type of dimer with rate <, if we make 

the identification K = + K^,. 

In this section, we shall restrict our attention to this competitive 

dimer filling process for the case of an initially empty square lattice. 

We then have 

.-1 d/dt p. = - 4 Poo = - 4 P. q»* . (4.2) 

where >' denotes an empty conditioning site so Q„. = In the 
VY 00 O 

l^^-order truncation approximation^^'lO) 
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te -1 d/dt £n (^ = - 1 - 2Q(y (4.3) 

which allows (4.2) and (4.3) to be integrated with (4.1). Some quantities 

for this process cannot be trivially determined from those for standard 

random dimer filling (cf. Section II). The simplest sucn example is the 

probability (or P^,^) of ad- (or d'-) filled site adjacent to an empty 

site. We must use that 

d/dt Pj, = Ky (P,o, + 2Pg^) - - (Pdoo + 2P^g) 

= -d (Qow + 2Q ) P (Qdw +2Q 1 P 

3 KD 9O+ ^00 - 3 K % ^00 

(4.4) 

in the 1^^-order approximation (allowing integration with the above 

equations). Now we can also determine P^^ from 

d/dt . Kj (P^ * ZPdoo ^ = 'd (1 + 2% + 40 T P 

---'d (1 + %) ^oo ' «d Co + «I'd.) Poo/Po (4.5) 

in the l^^-order approximation. Using conservation of probability, one can 

now also determine l^^-order estimates of such quantities as P. .  = P -
do 0 
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^00 " ''do» ^dd' = ""d - ("do - ''dd ^d'd' = 1 - ^00 - Z^do • ZPd'o ~ Z^dd' 

- Pj, - Pj,Q - Pjj,. It is important to note that these identities 

are consistent vrith the truncation solutions obtained from integrating 

additional equations for P^.Q, P^^, and Pj,j,. For example, one obtains 

from the 1^^-or 

rearrangement. 

from the 1^^-order truncated P^.^, P^^ and P^^ equations, after some 

"/A (Poo + ""do ^ Pd'o) = - [1 + 3Coo + fdo ^ Pd'o'/P»] Poo . (4-6) 

which should be compared with (4.2) to demonstrate that P__ + P. + P= 
00 do do 

""o-

For comparison, we now consider the 2"^-order truncation estimates of 

these quantities. It is natural to start with P^^ which couples to P^^^ 

and P „ which are retained in the 2^^-order. These then couple to P , 
d8 d8o 

Pgg P ». Other quantities are truncated, e.g., P^^^^ . P^^^ P^^^/P^^ 

in the 2"^-order, according to the prescription in Section II. If we 

continue according to this prescription, we clearly obtain a closed coupled 

set of equations for (the large set of) P's with a single 'd' and adjacent 

connected clusters of empty sites where each is within two lattice vectors 

of the 'd'. This observation motivates the introduction of a modified 

2"^-order truncation, based on Q equations, which involves far fewer 

equations with only a slight reduction in accuracy. 

Here we deal with the Q —r = P . ,/P , where either none or one of the 
oo a 

specified sites in the subconfiguration a +£' is d-filled, and the rest 
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are empty. It is easy to see that an exact closed set of equations can be 

obtained for these (with a either 'o' or 'd') using 

d/dt in (^5^= S(£ +2') - S(2') , (4.7) 

where S(a") = d/dt in P^„, which can be expressed in terms of these Q's. 

For example, one has 

''o8g"'3g " ^ ''^8 ""SSo * ''g§'"'S8 

' q*, Qw/Q* - ztci + 0,, + 0,,, + q.) . (4.8) 

Where '*' ('5') denote empty (d-filled) conditioning sites. In the 

2^'^-order truncation, we neglect conditioning sites in these Q's further 

than two lattice vectors from the single 'o' or 'd' conditioned site so, 

G'9., 0 66' 91*5 Q * ' Qg* Q.o —^ Q.o- ^ potential 
0^9 09^ 0i^(^ 

deficiency of this approach is seen in these last two examples where we 

draw on the shielding propensity of a d-filled site (which is less than 

that of an empty site), but these approximations are no worse than others 

made in 2"^-order. 

By evaluating 2"^-order expressions for S(do), S(doo), S(jg), S^^g^), 

^(qSo), and 5(^0^), one obtains a closed set of equations for 

V' "«?•' "5$' %' W 
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"standard" 2"^-order empty we note that Q's with a d-filled 

conditioning site '6' are given by indeterminate forms at t = 0 = 0, e.g., 

q , = P ./P.. Furthermore, one finds terms in their d/dt Q equations which 
0$ 08 8 

are singular at t = e =0, e.g., S(do) includes a term Pqqq/PjIq = 

However using straightforward formal density- (coverage-) 
Oç? O9 0* 

expansion techniques (described in Ref. 5), one can determine initial 

values, and demonstrate the cancellation of singularities from terms of 

1^^-order in the coverage, and determine initial slopes from terms of 

2"^-order in the coverage. The closed set of equations can then be 

integrated to provide 2^^-order estimates of such quantities as P^, P^, 

P__, P._, It is now a trivial matter to determine the 2"^-order 
00 do 

estimate of P^^ from 

""dd = "d Coo * % ("o * \ V ""o' • (4-9) 

In Fig. 7, we have plotted resulting probabilities for various 

configurations of an adjacent pair of sites, as function of the total 

coverage, 8 = Gj + @4:' 
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0.2 0.4 0 0.6 0.8 

Figure 7; Total coverage dependence of probabilities for various 

configurations of an adjacent pair of sites, for competitive 

random filling of two distinct dimer species, d and d'. 

Behavior for K^, = K^ ( ) and Kj,= 2Kj (—) is shown 
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V. DISCUSSION 

We have exploited sophisticated hierarchial truncation techniques here 

to obtain accurate results for the kinetics and statistics of processes 

involving competitive, irreversible (immobile), random filling of monomers, 

dimers, ••• on 2D lattices (the first such results for nontrivial 

competitive, irreversible ZD-lattice processes). "Filling trajectories" 

for various ratios of species filling rates are used to conveniently 

characterize these filling processes. For comparison, we again recall that 

in standard analyses of the kinetics of competitive 1^^-order processes, 

i.e., competitive random monomer filling, one trivially obtains straight 

line filling trajectories with slopes determined by the rate ratio. Me 

have shown that this is also the case for various nontrivial competitive 

filling processes where only dimers, or only linear trimers, . are 

involved (cf. Section IV). 

It is appropriate to indicate, here, a subtle variation of the random 

dimer filling mechanism, which we characterize as "end-on dimer filling". 

Instead of randomly sampling empty pairs of sites on which to adsorb (as 

implicit in the above treatment), one could randomly sample single empty 

sites (with one end of the dimer) and then either attach the other end to a 

randomly chosen adjacent empty site (should one exist) or, otherwise, 

desorb. We shall elaborate on the statistical difference between the 

models in later work^^^^, where it will be shown that the saturation 

coverage for random end-on dimer filling (cf. random dimer filling) is 

87.668% (cf. 86.466%) from exact calculations on a ID lattice, and 92.1% 
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(cf. 90.7%) from approximate calculations on a 2D square lattice. These 

results indicate that Hayden and Klemperer's^^^ Monte Carlo simulations, 

modeling random adsorption on metal surfaces of two-point g-CO, in 

competition with one-point o-CO, refer to the end-on dimer filling model 

(they obtained saturation coverage estimates, for dimer filling with no 

monomers present, of 88.0% on a ID lattice, and 92.1% on a 2D square 

lattice). For further comparison of the models, one can consider, e.g., 

the saturation coverage of g-CO (dimers) for various ratios of the g-CO 

(dimer) to o-CO (monomer) adsorption rate For = 3/2 (5/3), 

Monte Carlo estimates in Ref. (7) for end-on dimer filling yield 65.8+1.5% 

rd (67.4+1.5%), which should be compared with our accurate 3 -order 

truncation results for "conventional" dimer filling with K^/^^ = 3/4 (5/6) 

of 53.969±0.005% (56.096±0.005%). Ratios Ky/K^j are doubled in the end-on 

dimer filling case to ensure corresponding short time partial coverage 

behavior for the two processes. Detailed discussion of this point, and 

confirmation of the above Monte Carlo results, will be presented in later 

work^^^), but we note here the potential for using results from these 

models to assertain the underlying dimer filling mechanism. 

Finally we renark that our method is readily adapted to consider the 

effect of a stochastic, e.g., random, distribution of inactive 

(nonadsorptive) sites on competitive filling processesThis would 

allow an accurate analytic treatment of competitive g-CO and o-CO 

adsorption on binary alloys (as simulated in Ref. (7)). 
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APPENDIX: COMPETITIVE IRREVERSIBLE RANDOM FILLING ON 

BETHE LATTICES AND OTHER BRANCHING MEDIA 

Exact solution of the hierarchial equations is possible for 

competitive, irreversible, random, and sometimes cooperative, filling of 

monomers, dimers, on Bethe lattices (infinite, regular lattices with no 

key to exact solution is the empty site shielding property described in the 

Introduction (cf. Réf. 3). For competitive random filling involving 

monomers and dimers only, this property implies that any site which 

separates the lattice into two, or more disconnected parts (i.e., an 

articulation point), when specified empty, shields sites in one part from 

the influence of those in the others. It is natural to use these results 

to gain insight into the behavior of corresponding processes on physical 

lattices of the same coordination number. For Bethe lattices, we expect 

significant similarities when the size of the adsorbing species (extended 

by the range of the cooperative effects) is smaller than the (smallest) 

closed loops on the physical lattice. Here we consider only competitive 

random monomer and dimer filling. 

For this process on a Bethe lattice of coordination number c(>2), we 

have that 

closed loops) and on more general branching media^^^) (see Fig. 8). The 

(la) 

- P.0 = P.. "'d "oo ^ '•ooo • (lb) 
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dL-p qL_p #L_p 

Figure 8: Examples of infinite, regular lattices for which exact solution 

of the hierarchial equations is sometimes possible 

(a) a Bethe lattice with c=4; (b) a square cactus. Here the 

length of the bonds (connecting sites) has no significance, 

i.e., the lattices should be interpreted as graphs where only 

connectivity is relevant. Thus, for (a) and (b), all sites are 

equivalent 
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where ooo represents a string of three connected empty sites. These 

equations can be rewritten as 

d/dt in P* = Km + c Kj . {2a) 

- d/dt in Qo* = Km + ^d + ^(c-l) - c 

= + =d + (c-2) 9o+ ' (2b) 

^ere = ^ooo^^o ^^b), we have used that 

Q_. since, here, any (single) empty site shields^^*^^. Integration of 
0? 

(2b) yields immediately 

0 - 0  «*p[-(cm+cdlt] 

Dividing (2a) into (2b) and integrating, one obtains 

c 
_ («nMc-D »d) q *m"*d * <c-2l 'd " ^ ,,, 

0 " + lc-2) iCj U «m * «d 

Which, together with (3), yields the explicit time dependence of P^. Note 

that the first factor on the r.h.s. of (4) equals exp(-iC|^t). 

Partial coverages can now be obtained through integration of the 

equations 
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d/dt 'm ' «m »d = c c, P*, = c P, , (5) 

(or Me can use ^nd drop one of the equations (5)). The 

physical requirement that 8^=1-Pq when <^=0 and 8Q<1-PQ when K^X) and t>0 

is guaranteed since the second factor in (4) is identically equal to unity 

when KjO and between zero and unity when K^X) and 0<q<l. 

It is interesting to note here that the above results coincide with 

the 1^^-order truncation approximation on a physical lattice of 

coordination number, c, provided this lattice has no closed loops of length 

three. Clearly the 1^^-order approximation on, e.g., square and hexagonal 

lattices cannot "see" that these lattices have closed loops. For a 

hexagonal lattice (which has larger loops, and is thus more "Bethe lattice 

like"), the zT^-order approximation also coincides with the c=3 Bethe 

lattice results^^). Thus the similarity between hexagonal and c=3 Bethe 

lattice behavior is greater than that between square and c=4 Bethe lattice 

behavior (see Fig. 1). 

It is natural to consider these filling problems on branching 

structures, having some closed loops, which resemble the physical lattice 

more closely than the corresponding Bethe lattice, but for which exact 

solution is still possible. In this context, we consider competitive, 

random monomer and dimer filling on a square cactus (see Fig. 8). Using 

the fact that, here, any site specified empty separates the lattice into 

two disconnected parts and shields sites in one part from the influence of 

those in the other, one can straightforwardly obtain the following closed 

set of equations 
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d/dt An Po = Cm + ' 

- d/dt in Qo* = Km + Cd(l + 2Qp,) ' 

d/dt in Q„ = ^Qo* •" - ZQ. ) » 

d/dt i n  +  2K j (l +  -  Q^) (5) 

Here sites in the configurations and ^ should be interpreted to lie on 

a single loop. Integrating these equations together with (5) produces the 

results shown in Table I. As might be anticipated, these lie between the 

c=4 Bethe lattice and square lattice values. 
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ABSTRACT 

The recombination of nearest neighbors in a condensed matrix of free 

radicals was modeled by Jackson and Montrol1 as irreversible, sequential, 

random dimer filling of nearest-neighbor sites on an infinite, 3D lattice. 

Here we analyze the master equations for random dimer filling recast as an 

infinite hierarchy of rate equations for subconfiguration probabilities 

using techniques involving truncation, formal density expansions (coupled 

with resutmation), and spectral theory. A detailed analysis for the cubic 

lattice case produces, e.g., estimates for the fraction of isolated empty 

sites (i.e., free radicals) at saturation. We also consider the effect of 

a stochastically specified distribution of nonadsorptive sites (i.e., inert 

dilutents). 
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I. INTRODUCTION 

It is possible to condense free radicals of, e.g., 0, H or N, as a 

quasicrystalline matrix in which recombination and a subsequent release of 

energy can occur^^^. Jackson and Montroll, and othershave modeled this 

process ass uning nearest-neighbor (n.n.) free radicals (sequentially) 

recombine randomly and irreversibly leaving an isolated fraction of free 

radicals at the end of the process. The effect of a stochastically 

specified, time-independent distribution of inert dilutents on the latter 

quantity is also of interest. This model is clearly equivalent to the 

irreversible (sequential) random dimer filling of n.n. sites of a 3D 

lattice. 

Random dimer filling of n.n. sites on lattices has received the most 

thorough attention of any (nontrivial) irreversible process on a lattice. 

The saturation fraction of isolated empty sites, P^, is the prime quantity 

of interest here (see Fig. 1). The earliest analyses were for ID lattices 

in the context of pairing/cyclization reactions on polyner chains^^'^^ 

beginning with Flory's^^^work in 1939 which showed that = e~^ for an 

infinite ID lattice. The 2D lattice case has been the subject of several 

studies in the context of two-point surface adsorption and reaction^®"^^^ 

Combinatorial techniques have been used for finite and 2D^^^ 

lattices and several Monte Carlo simulations have been performed for the 2D 

case(^). The analytic approach implemented here is based on the 

hierarchial form of the master equations describing the time evolution of 

probabilities for various subconfigurations of filled and/or empty sites. 
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(c) 

Figure 1: Dimer filling of a (a) ID linear, (b) 2D square, (c) 

3D cubic lattice creating isolated empty sites 

(indicated by 'o') which never fill 
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These can be written down intuitively even for reversible nonrandom adsorp-

tion^^®*^^*^®^ (where the adsorption/desorption rates depend on the state 

of a finite region around the sites being filled). They are particularly 

simple for irreversible random dimer filling (see Refs. (4,5) for ID and 

Ref. (10,13) for 2D). Solution of these hierarchial equations gives 

complete information about not only the time evolution of the process but 

also the nonequilibrium saturation state including, e.g., P^. (Equilibrium 

is not achieved since the dimer adsorption is irreversible and imnobile.) 

In this work, we consider random dimer filling on infinite lattices 

and implement various techniques to analyze the corresponding (infinite) 

hierarchy of rate equations. We first present a simple spectral analysis 

which exploits the special linear structure of these equations. Next a 

hierarchial truncation technique, approximate except in ID, is discussed. 

We adopt a scheme used by Vette et al.^^^^ in 2D which deals directly with 

conditional probabilities for a site to be empty given various other sites 

are empty. This technique is tailored to the special structure of the 

hierarchy, associated with irreversibility, which leads to a shielding 

property of suitable walls of empty sites (see Ref. (15) for a discussion 

in the context of general irreversible cooperative processes). A third 

alternative is to obtain formal density (coverage) expansions of solutions 

(11,12) These are readily available even for complicated cooperative 

irreversible processes but typically suffer from convergence problems par

ticularly for high, e.g., saturation, coverages. Consequently, here we 

also implement a resummation procedure which incorporates our knowledge of 
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nonanalyticity (outside the physical range of coverage) explicit in the 

lowest order truncation solution. 

In Section II we analyze the kinetics of irreversible random dimer 

filling of n.n. sites of an infinite uniform lattice (i.e., free radical 

recombination in the absence of inert dilutents). The nature of the 

approach to the final state is first elucidated through a simple spectral 

analysis. Next the truncation and density expansion resunanation techniques 

described above are implemented. Most of the detailed results presented 

are for the case of a cubic lattice. Estimates for the final fraction of 

isolated empty sites (i.e. free radicals) demonstrate good agreement 

between the two techniques. The truncation and density expansion 

techniques are extended straightforwardly in Section III to analyze the ef

fect of a stochastically specified distribution of nonadsorptive inactive 

sites (i.e., inert dilutents). 
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II. DIMER FILLING OF INFINITE UNIFORM LATTICES 

(RECOMBINATION IN THE ABSENCE OF INERT DILUTENTS) 

A. General Theory 

For convenience we shall use the terminology of adsorption. Thus we 

consider the irreversible random dimer filling of nearest neighbor (n.n.) 

sites of an infinite, uniform lattice. One can intuitively write down an 

infinite hierarchy of rate equations for the probabilities that groups 

{m} of 'm' sites are empty (evaluated with respect to an appropriate 

ensemble of irreversible fillings). Specifically (cf. Refs. (10,13), 

d/dt = - "{m} P{m} • 

where < is the (single) adsorption rate, n^^^ is the number of n.n. pairs 

in {m}, and n^ is the number of sites in {m} adjacent 

to j. These terms correspond to destruction of {m} through dimer 

adsorption on sites completely within and partly overlapping {m}, 

respectively. In the 2*^^ term, rather than P^^^ appears, since site 

j must be empty for the dimer to land in the described fashion. Note that 

(2.1) contains an infinite closed subhierarchy for connected clusters of 

anpty sites. 

The equations (2.1) do not assume any invariance of the P^^^'s and 

thus apply for any choice of initial conditions. Here, however, we assume 

that the P^^^ are invariant under all space group operations on the lat

tice, as for example with an initially empty lattice, i.e., P^^^ = 1 at t = 
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0 for all {m}. Thus {m} in (2.1) will be interpreted, henceforth, as 

representing the infinite class of subconfigurations of sites equivalent to 

{m} after translation. For example, for a ID lattice, if denotes the 

probability of any m-tuple of empty sites, thai (2.1) includes the infinite 

subhierarchy^^*^*^^^ 

d/dt = -(m-1) Pm - 2 P^+i , m > 1 , (2.2) 

where these terms correspond to destruction of an empty m-tuple by a dimer 

adsorbing completely within and partly overlapping the m-tuple, 

respectively. 

In this work we invoke spectral tneoretic, hierarchial trunca-

tion^^^'^^^and formal density expansion (with subsequent 

resummation)(^^'^^) techniques to analyze various equivalent forms of these 

equations. The former two are now described for a (general) lattice with 

coordination number c, and the latter two are implemented in the next 

subsection to treat the cubic lattice case. 

Exploiting the fact that (2.1) is linear and thus can be written in 

(infinite) matrix form, one can readily extract some understanding of the 

nature of the approach to the final stationary state. Let P(m) be the 

finite dimensional vector constructed from for connected {m} (modulo 

translations) and fixed m. We may or may not choose to reduce the dimen

sion of P(m) through other symmetries. Thus, e.g., P(l) = P^^} = Pg* the 

probability that any site is empty. Next we construct the infinite 

dimensional vector P, say, from these, which satisfies the time evolution 
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equation (2.1) in the form 

d/dt 

id)"" Q Q+d) Q Q 

i(2) = -K 

o
il 

CM Si CM C
ll O

il 

i(3) Q Q d(3) q+(3) Q 

: 
Q Q(4) Q+(4) g 

: 
9 *•. 

P(l) 

P(2) 

P(3) 

= K 

P(l) 

P(2) 

P(3) 

(2.3) 

multiple of ^£j+i}_{j} y_ where the Kronecker delta here means that 

(j} c {j+1} and the only site of {j+1} not in {j} is k. In a rigorous 

setting, ^ should be regarded as the unbounded generator of time evolution 

in the infinite dimensional «"-type Banach space naturally associated with 

the vectors 2. 

The infinite dimensional rate matrix K on the r.h.s. of (2.3) gen

erating time evolution is upper triangular and consequently its eigenvalues 

are given by its diagonal components -tcn^^.j. Furthermore the eigenvector 

corresponding to the nondegenerate eigenvalue -xn^^ = 0 can be chosen to 

have unity in the first component and zeroes elsewhere. This result should 

be anticipated since, in the final stationary state, clearly (in £) = 

0 for m > 2, but P,,, = P" * 0. It is also useful to calculate the 
{1} 0 

corresponding biorthogonal dual eigenvector (1, ^(2)^, _a(3)^, «••)» say. A 
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simple recursive analysis shows that 

_a(j)^ = - _a(j-l)^ • a (j-1) • Q(j) ̂  

=  ( -1 ) ^ " ' ^  a ^ ' d )  .  Q(2 ) - l  .  r i * {Z )  .  Q(3 ) - l  .. . n+(j-l) . Q(j)-1 . (2.4) 

Now since n(2) = 1 and n(j) > 1 for j > 2, and for an initially empty 

lattice PJ^_Q= (a vector with every component unity), it follows that 

P(t) = e"^^.l = 
1 

0(2) 

0(3) 

(1, _a(2)^, _a(3)^, •••) • 1. 0(e as t-x» , (2.5) 

where, for each j, all components of 0(j) are zero. Consequently the 

saturation value, P^, of P^ = P^^^ (i.e., the final fraction of isolated 

empty sites) is given by 

= (1. a(2)\ a(3)T. ...) . 1 (2.6)  

For a ID lattice, it follows immediately from (2.2) that n(j) = j-1, n+(j) 

= 2 for j>l, and (2.4,6) readily yield P^ = e~2 recovering the well known 

result of Flory(^). However, difficulty in obtaining accurate estimates 

of f^from (2.6) increases dramatically as the lattice dimension increases. 

We can, of course, extend £ to include disconnected configurations {m} 

as well. Since disconnected configurations, loosely speaking, couple only 
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to those with the same or shorter separations, we can, by restricting our 

attention to a finite range of separations, still choose finite-dimensional 

vectors £(n). However there is no need for this. It is interesting to 

note that if includes where all 'm' points are separated (so n^^^ = 

0), then the corresponding rate matrix & has a zero-eigenvalue eigenvector 

with all components zero except the After constructing biorthogonal 

dual eigenvectors corresponding to all zero eigenvalue eigenvectors, the 

nonzero saturation values of such can be calculated analogous to 

(2.5,6). However, even in one dimension, such a construction is 

complicated. 

Finally, we remark that the upper triangular structure of the 

hierarchial rate equations for probabilities of empty subconfigurations is 

generic to all irreversible random and cooperative processes. The zero 

eigenvalue dual eigenvector construction can be extended, in principle, to 

determine saturation coverages, e.g., for random polyatomic filling or for 

monomer filling with some degree of blocking. However, a more detailed 

treatment is left till later work. 

We next consider (2.1) in a modified form more suited to 

implementation of our truncation scheme and again restrict our attention to 

an initially empty lattice. Define the conditional probability Q. . . = 
J 

j being empty given the sites in {m} are empty (the sites in 

{m} are referred to as conditioning sites). From (2.1), one immediately 

obtains an infinite closed hierarchy for these Q's, specifically (cf. Refs. 

(10,13), 
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^"W}+J " "(m}) " ̂ |u}+j "k.{m)+j %,{">+! 

" 4{m) "k.{m) "!(.{.} • (2.7) 

Note that (2.7) also contains an infinite closed subhierarchy for Qj 

with j+{m} connected. Again subconfigurations labels can and will be 

interpreted to refer to classes equivalent after translations. A shielding 

property of empty sites embodied, e.g., in (2.7), has been discussed 

elsewhere in a more general context^^^^. For random dimer filling, this 

property states that if a wall of empty sites of thickness one separates 

the lattice into disconnected regions, then the sites in any one region are 

not influenced by those in the other regions. 

In one dimension, it follows that a single site specified empty 

.^shields sites on one side from those on the other. Thus, for example, = 

P«j.i/Pm= X = Qxx (where * denotes a conditioning site 

m m 

specified empty) are equal to Q(= Pg/P^: ^oo^^o)' for all m>l. This 

result follows immediately after simply recasting (2.2) in the form (2.7) 

to obtain^^^) 

ic~^ d/dt &n = - 1 - 2 (Q^^ " • (2.8) 

Furthermore, (2.8) implies that, for an initially empty lattice^*'^'^^). 

K-i d/dt &n Q = - 1 so Q = (2.9) 



www.manaraa.com

137 

which can be used to exactly truncate the hierarchy (2.2) noting that Pg = 

. In two and three dimensions, the separating shielding wall of sites 

specified empty must either be closed or extend to infinity (some 2D square 

lattice examples are displayed in Fig. 2). Proof of this shielding 

property again follows from observation of self-consistency with (2.7) 

after noting various cancellations analogous to those in (2.8). Some 

further discussion is given in the Appendix. Although this property does 

not allow exact truncation and solution of the hierarchy, it indicates the 

shielding propensity of enpty sites and adds credence to the following 

truncation procedure which recovers exact results in ID (Since filled sites 

do not have as great a shielding propensity, we avoid more standard 

Markovian-style truncations which, in any case, would not recover exact ID 

results). 

We obtain approximate finite, closed, coupled sets of equations for 

various subsets of Q's by adopting the n^^-shell truncation approximations 

of Vette et al.(^^). Here conditioning sites in the Qj^ further than 

'n' lattice vectors from 'k' are neglected. To illustrate this procedure, 

consider the 1^^-shell approximation. If Pg = Qq denotes the probability 

for any site to be empty, P^^ for an adjacent pair to be empty, ... and 

Q = P../P., ... then for a lattice with coordination number c, (2.7) 
Oy 00 0 

becomes 

K-i d/dt in P^ = - c Q_. 
V Q<p 

(2.10a) 

(2.10b) 
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Figure 2: Closed (A) and infinite (B) shielding walls, for 

random dimer filling on a 2D square lattice, which 

shield site j from the influence of k and visa versa 

(where 0 represents an empty conditioning site and 

the dots indicate that the wall of 0 sites extends to 

infinity) 
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where the sum on the r.h.s. of (2.10b) is over all empty sites j adjacent 

to the empty conditioning pair If there are no closed loops of length 

three (so excluding, e.g., a 2D triangular lattice), then this sum consists 

of 2(c-l) terms. Furthermore, here, in the 1^^-shell truncation 

approximation Q. .. + Q and so (2.10b) is replaced by 
J *99 OÇ 

K-1 d/dt in = - 1 - (c-2) . (2.11) 

Integration of (2.10a) and (2.11) for c>2 using the initial conditions = 

1, = 1, yields 

c-2 

Oc, = f:? [(c-i) Po ' - 1] • (2-12) 

Since clearly and hence are zero at saturation, the 1^^-shell 

c 

estimate of the saturation value of P^ is P^ = It has been noted 

elsewhere that (2.10a,ll,12) constitute the exact solution for random dimer 

filling on a Bethe lattice (i.e., a lattice with no closed loops) of 

coordination number 

Higner order truncation approximations, of course, retain more Q's 

(see the cubic lattice example below) and should be more accurate since 

neglected ' sites are further from the 'o' site and often will be 

obscured from the latter by several other sites (which will have 
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substantial shielding propensity). An estimate of accuracy can be obtained 

by comparison of results from different order approximations. We mention 

that the random dimer filling equations should be more amenable to 

truncation (especially at low orders) than those for other irreversible 

cooperative processes which typically require a shielding wall thickness 

greater than one^^^^. 

B. The Cubic Lattice 

Here we consider only the case where the lattice is initially empty. 

Exploiting all lattice symmetries, (2.1) becomes 

"/dt P„ = - 6 

"/A P.. = - Poo - 2 Poo. - « 

^ooo = - 2 'ooo -  ̂ ^0000 - = Ls - ' "080 

(2.13) 

where 0, 00, 000, denotes a single, pair, triple, of empty sites, 

respectively. From (2.13), one immediately obtains the following specific 

fom of (2.7) for = P,. ... 

K-1 d/dt in P" = - 6 Q„. 
0 09 

(2.14a) 
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.-1 d/dt «n (^ = - 1 - 2 - 8 6 (2.14b) 

V = - ' • ^ - %) - = (%,; - V ' 

We have already discussed the 1^^-shell truncation approximation 

wherein, e.g., Q„Q „ • Q„. in (2-14b) which then closes together with 

(2.14a). From (2.12) with c=6, one obtains a 1^^-shell estimate of the 

fraction of (isolated) empty sites at the end of the process of = —— = 
° 5/F 

.08944 (corresponding to a saturation coverage = .91056). Here = P^ 

Q can also be calculated without further approximation unlike 
09 

probabilities for larger configurations, e.g., the probability for any 

connected cluster of m empty sites, P^^^^ - P^ 

In the 2^^-shell approximation one neglects '*' sites, in the above 

Q's, further than two lattice vectors from the '0' site so, e.g., Q.... + 
OrTT 

Q_., Q Q -. Thus (2.14a,b) are unaffected by this truncation but, 

here, e.g., (2.14c) is replaced by 

K-i d/dt in = - 1 - 4 Q „ . (2.15) 
"99 

Continuing in this fashion, one obtains a minimal closed set of equations 

for the 14 Q's shown in Table I. These allow the determination of 

probabilities for several connected empty configurations, e.g., P = 
000 
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Table I: The minimal closed set of 14 Q's in the 2"^-shell 

truncation approximation for random diraer filling on a 

cubic lattice (the dots separating lattice sites are 

included to clarify the 30 configurations) 

1. 2. 3. 4.  0 

' O * ' * 0  'O*"0'"0 ^O'"0 

5. ? 5. ? 7. ?•••? 

O o " ' Â  ® O " " " à " ' 0  

È 

9. ? 10. 

8. ? 
Q g . .  .  . 0  

0 

? 11. ? 
t • 

. è * * * 0  J 0 ' ' : 0 ' ' ' 0  

A 

j j . . . 0 . . . |  
Qn* ; 

É 

12. ? 13. ? 

Q o " : 0 * " 0  O o ' ' : 0 '  

14. ? 0 

QJ * O'':0'''0 

i 0 
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^ ~ ^ » without further approximation (agreement of 

the last two expressions for truncation solutions is proved in Ref. (15)). 

The probability P(0,6) of a single empty site surrounded by six filled 

sites can also be determined after first rewriting this expression in terms 

of P's for connected empty configurations using conservation of 

probability. Integration of the 2"^-shell equations yields the estimate 

PQ = .08454 (e^= .91546). Various probabilities and conditional 

probabilities are plotted as functions of coverage e = l-P^ in Figs. 3 and 

4 respectively. The latter clearly exhibits the shielding propensity of 

just a single empty site. Note that Q ^ - Q ^and Q - Q are too small 
oL of 

to show up graphically. We also mention that the 2"^-shell approximation 

exhibits "artificial shielding" in that Q^-Qu = 0 using the labeling of 

Table I (a generic phenomenon for these types of truncation schemes^^^^). 

Except for P^, saturation values for connected clusters of (n>2) empty 

sites are all zero. In contrast, those for P„ P P« P . , ... 0-0 ^0 0—0 _o_ 
0- 0-0 

are nonzero and the 1^"*, and 4""^ can be reasonably estimated in the 

2"^-shell approximation (here indicates an unspecified site). To 

determine P_ _ (P _), one must include an equation for (Q ) which 
0-0 gO o-<j. ot 

couples to Q._. (Q . ) and some of the above 14 Q's. Since the equation for 

Q . ( Q  .  )  i s  c l o s e d  w i t h  t h e  o r i g i n a l  s e t  o f  1 4 ,  P „  „  ( P  )  c a n  b e  
9°"? 0-

determined from integrating an extended set of 16 equations. To determine 

P , one must know Q as well as P . Its equation together with those 
0"0 0" 

for Q and Q close with the above 14 thus allowing integration. We 
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10xP(0,6) 

0 .2 .4 Q .6 .8 1 

Figure 3: 2"^-shel1 truncation values, as a function of 

coverage e, for probabilities of a pair P^, a linear 

(indistinguishable from a bent) triple P3, a square 

or T-shaped quartet, and a cross-shaped quintet 

P5 of empty sites. Pg(Py) corresponds to the 3D 

configuration 11(14) of Table I after replacing *'s 

with o's. 0 and P(0,6) are defined in the text 
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QoS 

-.04 

.2 
•" Qo0 •' 

Figure 4: 2"^-shell truncation values for deviations in condi

tional probabilities from plotted as a function 

of the natural parameter 
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obtain the saturation values ^ = .777x10-2, P .861x10-2, P ^ = 

.227x10-3. In Fig. 5, corresponding correlations are plotted as functions 

of 8. 

Let us now sketch the formal density expansion method of 

of configurations with all specified sites filled 'a'. This can be 

obtained from (2.13) using conservation of probability, i.e., P = 1 - P , 

P„^ = 1 - 2 P, + P,^, ... where P^ (= e, the coverage), P,^, ... denote 
00 a aa a aa 

probabilities for a single, adjacent pair, ... of filled sites. This new 

hierarchy is, of course, equivalent to (2.13) and can be written down 

intuitively as follows: 

solution^^^*^^). Here we must start with the hierarchy for probabilities 

K-l d/dt . 6 P,, = 6(1 - 2 P, + P„) (2.16a) 

8a 

aaa ' » "g, 

aaoo 

(2.16c) 
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Cooo .01 

.00 

-.01 

.02 

0 2 1 8 # # 

Figure 5: 2^^-sheTI truncation values for the correlations 

= PQJJ - (PQ)2 (the dotted line gives 1^^-shell), C ^ 

" P^o " (^o)^' ^0-0 ' ̂0-0- (fo)^' Cooo ' ̂000 " 

Vo - -0 ^ = 'A 
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(Here, one should think of a ditner landing on the empty pairs shown on the 

r.h.s. to create the configuration on the l.h.s.)- We now divide (2.16a) 

into the rest of (2.16) to obtain d/de [= (d/dt )/(d/dt P^)] 

equations which, after formally expanding denominators, have the form 

d/de P„ = 1/6 {1 + 10 P, - 10 P,, - 2 P, , - 8 P , + 2 P„, + 8 P, aa a aa a-a add a 

+ (8 P, - 9 ^ - ''aa' + •" 1 (2-173) 

Paaa = {2 P, + 8 P,, + ... } (2.17b) 

Next we postulate a Taylor expansion form % Be" with respect to 
p=0 P 

the coverage (density) e, for the solutions P,^, P,,,» of (2.17), where ad ada 

Bp depend on the (filled) subconfiguration in question and n* naturally 

equals the minimitn number of diraers required to cover that 

fl21 configuration^ The coefficients 8^ in these expansions are simply 

determined recursively after substitution into the d/de equations (2.17) 

and equating terms of equal power in e. In particular, from (2.17a), it is 

immediate that P^^ = 1/6 e + •••. More generally, this procedure yields 

^aa " 7 ® + 32? + TIC 9* + 
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^a-a = + T3? P,a = 15 + 31 + 
a-

Paaa = T3f*^ + TT = 15 + ST + 

V P a a ,  = ^ * = + " "  P g g  =  & * : + ' "  

(2.18) 

One can directly estimate (albeit rather poorly), the saturation coverage 

from the above expansion for P by simply determining the appropriate root 

of Pqq(0) =1-20+ Pggje) = 0. However a more sophisticated approach is 

now presented. 

The 1^^-shell approximation for obtained from (2.12) after setting 

c=6 and = l-e, suggests that we seek an expansion for in the form 

2/3 
= (1 - o) + a(l - 8) + g 82 + Y 83 + 5 8*» + (2.19) 

which displays explicitly nonanalyticity outside the physical range of 9. 

The coefficients a, 8, are obtained by expanding P^^ = (1 - e) Q^(9) 

as a power series in e and matching coefficients with the expansion for 1 -

28 + Pg^(8) obtained from (2.18). This yields 

o = 5/4 recovering the 1^^-shell approximation. 
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g = 0, T = 1/81 ("almost" canceling), 5 = 19/1944, ••• (2.20) 

Values of and associated with the partial sums of (2.19,20) are given 

in Table II along with their values from the truncation techniques. 

st 
The agreement of a with the 1 -shell truncation value and the vanish

ing of g can be understood as follows. We first emphasize that the n^^ 

coefficient in (2-19) is determined from the 1^^, 2"^, ••• and n^^ coeffi

cients in the density expansion of Second, we observe that using the 

corresponding expansion for for random dimer filling on a Bethe lattice 

with coordination number 6, one obtains a = 5/4 and all remaining coeffi

cients equal to zero (since the 1^^-shell approximation the exact Bethe 

lattice solution^^®^). Finally, we note that in determining the first two 

coefficients of P,_ in (2.18), we do not "see" that the lattice has closed 
da 

loops since the small subconfigurations entering at this stage involve no 

closed loops and could equally well be associated with a Bethe lattice of 

coordination number c=6 as with a cubic lattice. Consequently, these 

coefficients have the Bethe lattice values. 
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Table II: Random Dimer Filling of a Cubic Lattice: Estimates of the saturation 

fraction of isolated empty sites P® (and hence coverage 0^ • 1 - P®) 

from resummed density expansion and truncation techniques (cf. P^ * 

.138 in Ref. (2)) 

partial sun 1 & 2 (1^^-shell) 3 4 2"d.shell 

Po (»*) .08944 (.91056) .08441 (.91559) .08070 (.91930) .08454 (.91546) 
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III. DIMER FILLING OF LATTICES WITH A 

STOCHASTICALLY SPECIFIED DISTRIBUTION OF INACTIVE SITES 

(RECOMBINATION IN THE PRESENCE OF INERT DILUTENTS) 

Consider now the random dimer filling of a lattice with a 

time-independent (stochastically specified) distribution of inactive sites 

on which a dimer cannot land. Thus we start with a suitable 

(time-independent) ensemble of inhomogeneous lattices including inactive 

sites and with each member of this associate an appropriate ensemble of 

irreversible fillings. All probabilities discussed below are implicitly 

evaluated with respect to this combined ensemble. 

The site-type distribution can be specified by a set of 

time-independent, probabilities that all sites in the set {m} are 

active. It is convenient to define the conditional probabilities y. = 
J 9 

®j+{in}^®{m} site j to be active given that sites in {m} are active. 

Typically Y. . . will be independent of sites in {m} further than a certain 
J »t *"/ 

distance from j, and for a random distribution, trivially Y.. = 8.- = 8 

for all j and {m}. These quantities together with the adsorption rate, K, 

constitute the input to the hierarchial rate equations for this process. 

Exactly this type of formulation appears in the theoretical treatment of 

the kinetics of reactions involving binding to copolymers (i.e., ID 

lattices) with (time-independent) stochastically specified site-type 

distributions^^^). 

Typically one assumes translation invariance of the site-type 

distribution. Then if P^ = o, say, denotes the probability that a site is 
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inactive (defective), that a site is active and empty, and P^ that a 

(necessarily active) site is filled, then clearly Py + P^ + P^ = 1. It is 

natural to ask what effect the inactive sites have on the final fraction of 

active and empty sites P^. Clearly as o increases the fraction of active 

sites, P^ + P_ = 1 - a = g decreases (to zero when a = 1). However, 

increasing a also means there are more sites adjacent to inactive sites 

which we expect are less likely to fill (there are fewer ways a dimer can 

land covering these). Consequently the net effect is unclear (except for o 

near 1) and is analyzed below. 

A. General Theory 

The probabilities, P^^^, for finding the sites in {m} empty and active 

are naturally decomposed, here, as P^^^^ = f^^^ where, by definition, 

the quantities f^^^ are (conditional) probabilities for finding sites in 

{m} empty given they are active. Clearly the P^^^ (still) satisfy (2.1), 

but here it is inore convenient to deal directly with the infinite closed 

hierarchy for the f^^^ These equations can be obtained by dividing (2.1) 

by or written down intuitively, and have the form 

ic-i d/dt f{m} = - "{m} ^{m} " ^j.{m} ^{m}+j ' (^-l) 

Note that y . r„-.fj._igives the probability that the sites {m}, given 

active, are empty and that site j is active and empty (as is required for 

dimer filling). Of course, when g = g^^j = 1 (no inactive sites), f^^^^ = 

P. . and (3.1) automatically reduces to (2.1). For an alternative 
I •"} 
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perspective, consider random dimer filling of an initially partially 

(monomer) filled infinite, uniform lattice. Let now describe the 

stochastically specified distribution of initially empty sites, i.e., 

= at t=0, where here, gives the probability that {m} is empty. 

Clearly (2.1) applies (being independent of initial conditions), and their 

solution here also solves the dimer filling problem on a "corresponding" 

defective lattice. 

Equations (3.1) are extremely general not assuming any invariance of 

the defective site distribution (S^^j) or site occupancy distribution 

(f{^j). However, henceforth, we assume that and hence f^^^^ (for an 

initially empty lattice), are invariant under all space group operations on 

the lattice (so again we can regard {m} as representing and infinite class 

of subconfiguations of sites equivalent to {m} after translation). 

Furthermore, we assume that y. . . depends only on the number of sites in 
J 

{m} adjacent to j, so then one can write f,- r-i = Yn • Thus, for 

example, for a ID lattice, if f^ denotes the probability that an m-tuple of 

active sites is empty, then (3.1) includes the infinite subhierarchy 

K~^ d/dt = - (m-l)f|^ - , m > 1 , (3.2) 

where denotes the conditional probability that a site is active given 

that its left (right) n.n. is active (and having no knowledge of the type 

of its right (left) n.n.). 

The spectral analysis of (3.1) as a linear system is analogous to 

that of (2.1) (the spectrum is identical). Hierarchial truncation and 
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formal density expansion (with subsequent resummation) techniques again can 

be used to analyze various forms of these equations. Exact ID truncation 

results as well as the corresponding l^^-shell truncation approximation for 

a lattice of coordination number c are described below. Both truncation 

and density expansion methods are implemented in the next subsection to 

treat the cubic lattice case. 

For a ID lattice, defining q^ = f^_^j^/f^, one simply obtains from (3.2) 

the equations 

d/dt in q^ = -1 -2 ( Vl"^m^ » m > 1 (3.3) 

••jct 
which obviously have the solution (^ = e , m > 1, noting that q^ = 1 at t 

= 0. Using this result to straightforwardly truncate (3.2) yields 

fo(t) = fi(t) = exp [2Y^(e"'^^-l)] , (3.4) 

thus predicting a saturation value of f^ = e ^ (and = gf^]. The 

latter result is well known from theoretical statistical analyses of 

intrasequence cyclization on stochastic binary copolymers whose site-type 

distribution satisfies 1^^-order Markov statistics^^*^*^®^. 

Returning to the case of a general lattice with coordination number c 

> 2, it is straightforward to write equations for the quantities q̂ . = 

^{m}+j^^{m} (note that these q's are ratios of, but jiot themselves. 
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conditional probabilities). The shielding condition of empty sites, as 

stated in Section II, applies directly to these f or q quantities. The 

n*^-shell truncation approximations can be implemented on the q equations 

in the same way as for the Q equations. For example, for a lattice with 

coordination number c and no closed loops of length three, the 1^^-shell 

equations are 

- «-1 d/dt in f* = c 

(3.5) 

- d/dt in q^ = 1 + (c - 2) 

where is the conditional probability that a site is active given that 

one of its n.n. is active (and not having aiy information about the type of 

the remaining c-1 n.n.). For c>2 and an initially empty lattice these have 

the solution 

c-2 

q* = Tzzzr;- [(1 + ' -11 ' (3-6) 

so, consequently, the saturation values of f^ and are given by 

c 

P* = 8 i 1 - c ^ - (3.7) 

Note that these results are again exact for the corresponding Betne lattice 
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problem. The effect of the introduction of defects on is evident in the 

1^^-shell identity 

d/d= Poi«=0 = (Pola=0)/(c-l) ' (3-8) 

which follows from (3.7) assuming that Y^(a) = g + 0(a ) as a + 0. Thus 

initially increases as the inactive site concentration increases from 
0 

zero. One can further show that, for a random distribution of defects (so 

= 8), this 1^^-shell estimate of P^ attains its maximum when o = 1/2. 

B. The Cubic Lattice 

In this subsection, we restrict our attention to a lattice with a 

random distribution of inactive sites of concentration a = 1-g. In the 

l^^-shell truncation approximation, we obtain 

p I = ^ and d/do P^l =n = = .0179 . (3.9) 
° (5-4a)3/2 25/? 

The minimal closed set of equations in the 2"^-shell approximation contains 

14 q's for the same configurations as shown in Table I. Other q's may be 

added. In Fig. 6 we have plotted 1^^- and 2"^-shell estimates of P^ as a 

function of a. Numerical results for the 2"^-shell also indicate that P^ 

has its maximum at o = 1/2. 
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RESUMMED Expansion 

2ND Shell .08 
1st Shell 

.06 

0 6 2 4 8 I # # 

a 

Figure 6: Estimates of the fraction of empty active sites at 

saturation for random diraer filling on a cubic lat

tice with a random distribution of nonadsorptlve 

sites of concentration a 
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Density expansions of solutions are obtained by a procedure analogous 

to Section II. We start with the equations for probabilities, f, of 

configurations of sites, given to be active, which are in either an unspec

ified state 'x' or filled 'a'. For example, exploiting various lattices 

symmetries, and converting empty to unspecified/filled configurations using 

the relevant, more complicated form of conservation of probability yields 

d/dt f, = 6 » f,, = 6 , (1 . 2 f,, 4. f„) (3.10a) 

.-1 d/dt = fq, + @ + 4 » 

" = - 'xax - fxxa - "'.r "xl ' 

d/dt f = foo + 2 8 fooa + ^ » 'g, 

' 1 - 2 fxa + faa 

+ 28 (^xxa " ^xaa ' ̂axa * ^aaa 

^ ' ^ i S a - ^ ' l a - ' ^ l a ^ V  

(3.10c) 

Of course f^^ ë f, = P /g s 9/g since knowledge that a site is active 

influences the probability that an adjacent (active) site is filled. 

Furthermore, from (3.10), we see that there is no simple relation between 

these two f's. 
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To obtain density expansions, one again first divides (3.10a) into tne 

rest of (3.10) to obtain d/df_ equations and formally expand denominators. 

We postulate a Taylor expansion form for solutions where the lead power is 

the minimum number of dimers required to cover the filled sites in the 

corresponding configuration. Coefficients in these expansions are 

determined recursively after substitution into the d/df^ equations and 

matching terms of equal power in f_. Note that determination of, say, the 

m^*^ coefficient of f^^ involves many more configurations than the 

corresponding calculation for in Section II. However, straightforward 

calculation yields 

faa = ig fa + 35 ^a (^7 - f^) f/ + 

^xa = (§ + ig) fa + 71 (1 - fa ' h 

fxxa = + ig) fa + TZg " 3g3 ^a^ + *** 

^x# " fa + TZg 

fxax = G? + fa + TZg (§ * " Y " 3gj ^a 

^xS " ^3" * fa + Sg * - Y - igj fa^ + "" 
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fxaa' = W ^a + W ^ + T - fa^ + 

: (3.11) 

One can readily check agreement of (3.11) with (2.13) for 8=1. 

Resummation is again motivated by the l^^-shell approximation, 

specifically (3.6) after setting c=6 and f^ = 1-f^, which suggests looking 

for in the form 

qo^ = (1 - P) + P (1 - fa)2/3 + c fg: + n + ... . (3.12) 

Here p, ç, are obtained by expanding f„ = (1 - f,) q_. as a power 
00 u Oç 

series in f^ and matching coefficients with the expansion for 1-2 f^^ + 

fg^g obtained from (3.11). This yields 

st p = -r recovering the 1 -shell approximation, 4p 

; = 0, Ti = %^3 - j) ("almost" canceling), ... . (3.13) 

The agreement of p with the 1^^-shell value and the vanishing of ç can be 

understood from Bethe lattice arguments indentical to those given in 

Section II. The value of f^ obtained from (3.12) by neglecting higher 

coefficients and setting = 0 satisfies 

(fo) =1336 " ^o)^] • (3-14) 

The corresponding = g f^ is plotted in Fig. 6. 
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IV. DISCUSSION 

The techniques used here appear to have produced a reliable descrip

tion of the kinetics of random dimer filling of the 30 cubic lattice, at 

least for the probabilities of smaller configurations. In particular, 

fairly consistent values were obtained for the final fraction of empty 

sites, certainly Improving on the previous estimates. Determination of, 

e.g., large separation spatial correlations is more difficult requiring an 

extended set of equations and a more refined truncation procedure. To our 

knowledge these calculations constitute the first explicit treatment of a 

nontrivial irreversible process on a 3D lattice exploiting the structure of 

the corresponding exact hierarchial rate equations. Finally we note that 

the techniques used here are quite general although, typically, application 

to other processes will be more complex. 



www.manaraa.com

163 

ACKNOWLEDGEMENTS 

Anes Laboratory is operated for the U.S. Department of Energy by Iowa 

State University under Contract No. W-7405-ENG-82. This work was supported 

by the Office of Basic Energy Sciences. 



www.manaraa.com

164 

APPENDIX 

The shielding property of separating walls of empty sites of thickness 

one is incorporated in a rather subtle way in the hierarchy. Rigorous 

proof must be based on the observation of self-consistency with the 

infinite Q hierarchy and requires development of an appropriately general 

(and complicated) notation for subconfigurations. Thus here, instead, we 

illustrate with some examples, the structural feature of these equations 

which leads to shielding. We consider only the 2D square lattice (for 

notational simplicity) concentrating on the identities Q = Q and 

Q n = Q p 

From (2.7) one obtains 

-K-i d/dt in Q = 1 + % Q ... - I Q ... 
ext'j j'++{+** ext.j j 

-K-1 d/dt in Q _ = 1 + I _ Q_ ..." I Q 
0*;;;+ ext.j ext.j j.+n%* 
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where % represents a sum over empty sites j on the exterior of and 
ext.j 

adjacent to the closed shielding wall. The shielding condition, and in 

particular the first identity, is compatible with (1) noting pairwise 

cancellation of the terms in parentheses. The grouping of terms here 

(according to whether the 'o' site is inside or outside the shielding 

wall), when implemented throughout the Q hierarchy, demonstrates clearly 

self-consistency with shielding. 

For the second identity, one naturally considers the equations 

-K-i d/dt inQ =1+[Q o - Q ] 

+ 2[2Q w -Dp ] 

+ 2[q n * -Q n ] 

+ (Q - Q ) 
**$$$$$** * 

^ 2(Q - Q ) 
• * * 
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-K-l d/dt inQ g =1 + [Q p - Q ] 

+ 2[2Q ^ - Q 
> eAAAAa## 

+ {Q . - Q 

+ 2(0 , - Q ) 

(2 )  

again consistent with the shielding condition noting cancellation of terms 

in the second sets of parentheses and correspondence of those in the first 

sets. 

Several other more obvious identities can be proved. For example, 

after applying shielding to the Q , equation, one obtains 
4 

-ic-i d/dt &n Q ^ = 4(1 - Q ^ ) , (3) 

consistent with the physically obvious constraint (for any dimer filling 

process) that Q =1. More generally, for any closed, (empty) shielding 
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wall, one can always obtain a closed set of equations for various Q's with 

the conditioned 'o' site and conditioning ' sites all inside this wall. 
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ABSTRACT 

We consider processes where the sites of an infinite, uniform lattice 

are filled irreversibly and cooperatively, with the rate of adsorption at a 

site depending on the state of its nearest neighbors (only). The asymmetry 

between empty and filled sites, associated with irreversibility, leads one 

to consider the closed infinite coupled hierarchies of rate equations for 

probabilities of connected, and singly-, doubly-, ••• disconnected empty 

subconfigurations, and results in an empty site shielding property. The 

latter allows exact solution, via truncation, of these equations in ID, and 

is used here to determine probabilities of filled s-tuples, f^ (fj = 9 is 

the coverage), and thus of clusters of exactly s filled sites, n^ = f^-

2fg_^2 + fg+2' s < 13 and 11 respectively. When all rates are nonzero 

so that clusters can coalesce, the f^ and n^ distributions decay 

exponentially as s+«, and we can accurately estimate the asymptotic decay 

rate x(9) s £im f_.1/f_ = Aim n ,/n , where 0 = x(0) < x(9) < x(l) = 1. 
S-H»  ̂ S+» 

Divergent behavior of the average cluster size, as 9+1, is also considered. 

In addition, we develop a novel technique to directly determine the 

asymptotic decay rate, x(9), and indicate its extension to higher-

dimensional irreversible cooperative filling (and to other dynamic 

processes on lattices). 
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I. INTRODUCTION 

Consider processes where "filling" events occur irreversibly and, in 

general, cooperatively at a lattice of localized sites^^^. These have 

numerous important applications to the description of: (polymer analogous) 

reaction of small molecules at the sites along a polymer chain, and related 

intramolecular (e.g., cyclization) reactions(ID lattices); immobile 

chemisorption^*), and reaction between attached groups on surfaces^^^ (20 

lattices); localized reactions in crystalline solids^^^ (3D lattices). In 

every case, the characteristics of the "filled" cluster-size distribution 

are of basic interest. 

The special case where single sites fill randomly (having trivial 

local statistics) has been analyzed extensively within the context of the 

random site percolation problem^^^. For random dimer filling of nearest-

neighbor (NN) sites on a ID lattice (first analyzed by Flory^®^ in the 

context of a polymer cyclization reaction), some information on the filled 

cluster-size distribution is available from combinatorial analyses and 

simulations^^). Filling of single sites on a ID lattice, with NN 

cooperative effects, is the prototypical model for cooperative polymer 

(2 3) 
analogous reactions^ * . Characterization of the site-type statistics of 

the resulting copolymer is of primary importance, however only limited 

exact results have peen presented for the filled cluster-size distribu-

tions^^'^^). A clear indication of the need for application of 2D 

irreversible filling models to chemisorption comes from the observation 

that, in several systems, small islands of presumably immobile, adsorbed 
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species are formed (rather than one large island, as anticipated from 

entropie considerations alone)There is also direct evidence of 

negligible surface diffusion rates in these systems. More generally, 

irreversible cooperative filling provides a very natural extension of 

percolation analysis from random to correlated distributions, and, in fact, 

often constitutes a physically more realistic model. 

Henceforth we shall concentrate on a basic class of cooperative 

processes where the sites of a lattice fill, o*-a, irreversibly with 

adsorption rates, k-, depending only on the number i = 0, 1, •••, z of 

filled nearest neighbor (NN) sites (z is the lattice coordination number). 

The final (stationary) state is not in equilibrium (and nontrivial if the 

lattice cannot fill completely) since the irreversible, immobile filling 

incorporates no equilibration mechanism. 

Several avenues of investigation are available here. Analysis of 

Markov processes corresponding to the time evolution of such "infinite-

particle systems" is being actively pursued using the abstract machinery of 

mathematical probability theory^"^"'^^. Existence of the dynamics and 

fundamental characteristics of the process are considered here. One 

immediate result, expected intuitively, is that probabilities for filled 

subconfigurations in the above filling process should be bounded below and 

above (at each time, t) by the corresponding trivial quantities for random 

filling at rates k = min k- and k = max k., respectively. This result, 
i ^ 1 " i 1 

and its rigorous verification via "coupling methods", was pointed out by 

Liggett^^^). To illustrate its usefulness, we note that the probability, 

f^gj, of any set {s} of s filled sites satisfies [1 - exp(-t k^)]^ < f^^j < 
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[1 - exp(-t ky)]^, suggesting large s exponential decay of f^. Liggett^^®^ 

also notes that for ID filling where < kj < kg, if f^ refers to s 

consecutive filled sites, then a theorem of Harris^^®^ implies that f^^^ > 

f f , so X = Aim (-log f /s) exists, and is nonzero (when t > 0) if k. > 0. 
^ ^ s^ ^ 

We emphasize that these irreversible filling models incorporate a 

complicated competition between irreversible birth and growth of clusters 

(nucleation can occur at any time during the process). In the regime where 

0 < kg « k., i > 1, the nucleation centers are, on average, well 

separated. Thus for 2 or 3D, it is natural to analyze the structure of 

individual clusters. Mathematical probability theory has already provided 

some powerful techniques to denonstrate the existence of a large-size 

asymptotic shape for clusters in a class of stochastic (single) cluster 

growth models^^^"^^^. These techniques and behavior should apply to the 

filling processes studied here, and we note, in particular, that when the 

k-, i > 1, are equal, these individual clusters have (asymptotically round) 

Eden structure^^^^. This cluster structure should be contrasted with the 

fractal-like behavior seen in Witten-Sander^^^^, Meakin-Witten^^^^, 

growth models (based on diffusive hopping and sticking mechanisms). In 

analysis of competitive cluster birth and growth, e.g., of the cluster-size 

distribution, comparison should be made with cluster-cluster aggregation 

models^^^) also based on hopping and sticking mechanisms. 

Our goal, here, is the exact quantitative determination of the 

probabilities, f^, of s-tuples of consecutive filled sites in the ID 

filling problan for arbitrary rates, and a range of s up to the asymptotic 

regime. This will provide estimates of the asymptotic exponential decay 



www.manaraa.com

176 

rate, x. (More direct methods for determination of x are also of 

interest). For this reason an alternative approach, exploiting certain 

special features of irreversible filling, is adopted. We describe these 

f i l l ing processes using a set  of  master  equat ions wi th the rates,  k- ,  as 

input. Since we deal only with infinite, uniform lattices here, it is 

convenient to recast these as an infinite hierarchy of rate equations for 

subconfiguration probabilities. These can be written down intuitively and 

include loss terms, corresponding to filling of each empty site in the 

subconfiguration, and gain terms, corresponding to creation of the subcon

figuration by filling of appropriate sites in subconfigurations with one 

less filled site. For each case, we must account for all allowed config

urations of the influencing, neighboring sites and multiply by the 

appropriate ratesThroughout f^ will denote the probability of a 

subconfiguration of sites, cr, each specified either empty 'o' or filled 

'a'. Here we assume that the lattice is initially empty, and note that 

time evolution via the hierarchial equations preserves invariance of 

subconfiguration probabilities under all lattice space group operations 

(including translation and reflection). 

There are several special features of the hierarchy associated witn 

irreversibility, and the corresponding asymmetry between empty and filled 

sites. A closed subhierarchy can be obtained for very general (e.g., 

reversible) dynanical processes on lattices for probabilities of empty 

subconfigurations (by conservation of probability). However, for 

irreversible filling, there is a "minimal closed" subhierarchy involving 

just connected empty subconfigurations. Probabilities for disconnected 
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empty subconfigurations couple to those with the same or shorter 

separation(s), and thus indirectly back to those for less disconnected and 

connected empty subconfigurations^^^. One can also show that walls of 

empty sites of thickness two, that separate the lattice into disconnected 

regions, shield sites on one side from the influence of those on the 

other(^). For a ID lattice, these observations lead to exact solution of 

the hierarchy (as described below). However, in higher dimensions, exact 

solution is only possible for random filling, k- = k, for all i 

(trivially), and "almost random" filling, k- = k, for i < z; k^ * 

The 10 version of this process was first treated in the early 1960's, 

where it was recognized that the minimal closed hierarchy involves only 

f^ , probabilities for empty n-tuples, 0^^^*^. Exact solution followed 
n 

from the observation that f^ = f^^ q""^, for n>2, where q = e"'^o^, which 

is ,  of  course,  a consequence of  the shie ld ing property of  an adjacent  pai r  

of empty sites^^®*^^*^®^. Plate et were the first to describe the 

method of exact determination of more general quantities such as spatial 

correlations, probabilities f. = f_ of filled s-tuples, a. (i.e., "pair s a^ s 

connectivities" in percolation language^^^)), and filled cluster 

probabilities, n^ = ^oa o = ^s " ^s+1 ^s+2 "s = 6%^= 

""s+l " ""s^* determined n^ for s = 1, 2, 3 only (which provided no 

insight into asymptotic behavior), and compared values with 

simulations^^'^^). We have recently presented a detailed quantitative 

analysis of the behavior of spatial correlations including their large-

separation asymptotic decay^^®^. The observed superexponential asymptotic 
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decay is characteristic of a larger class of "infinite-particle 

s y s t e m s " .  

In Section II, we briefly review the hierarchial structure and 

solution for monomer filling with NN cooperative effects on an infinite, 

uniform ID lattice. Comparison is made of the exact equations solved here 

with corresponding approximate Smoluchowski-type equations. Such 

equations, which ignore cluster-cluster correlations, are often used to 

model coagulation processes. Exact results for filled s-tuple, f^, and 

filled cluster, n^, size distributions for s < 13 and 11, respectively, are 

presented in Section III (obtained from simultaneous integration of 

hundreds of exactly truncated coupled equations). We show tnat the average 

cluster size without site weighting can be obtained directly, but not the 

variance or average size with site weighting (for which results are also 

presented). In Section IV, we present a novel new approach for extracting 

directly from the (suitably recast) hierarchial equations, quantities of 

prime interest pertaining to the asymptotics of the cluster-size 

distribution (here, the asymptotic exponential decay rate). The extension 

of this powerful approach to higher-dimensional filling processes (and even 

to other models) is indicated. Some conclusions are drawn and extensions 

discussed in Section V. Specifically, we give some results for the more 

complicated ID monomer filling process with NN blocking and 2"^-NN coop

erative effects (where domain boundaries occur, just as in many 2D 

chemisorption systems). 
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II. HIERARCHIAL STRUCTURE AND SOLUTION FOR MONOMER FILLING OF AM INFINITE 

UNIFORM ID LATTICE WITH NN COOPERATIVE EFFECTS 

As indicated in the Introduction, the procedure for exact solution of 

this model reflects the special structure of the hierarchy associated with 

irreversibility, and the corresponding asymmetry of empty and filled sites. 

Since only empty sites shield, our truncation procedure operates directly 

on the closed subhierarchies for connected, singly-disconnected, .. empty 

subconfigurations. Such important quantities as the filled s-tuple 

probabilities, f^, cannot be obtained directly, but must be reconstructed 

from empty subconfiguration probabilities. Except for f^ = f^ = 1 - f^ and 

fg = f^j^ = 1 - 2fg + fgg, disconnected empty subconfiguration probabilities 

are required. For example, using reflection symmetry, one has 

f  = l - 5 f + 4 f + 3 f  + 2 f  +  f  - 3 f  -  4 f  
aaaaa o oo o-o o—o o—o ooo oo-o 

-  f  -  2f  +2f  +2f  +f  -  f  
0-0-0 00—0 0000 000-0 00-00 00000 

Since the procedure for obtaining exact solutions via hierarchy 

truncation is described in detail in Refs. (3,10,28), we only outline the 

basic ideas here. Probabilities for empty n-tuples satisfy the minimal 

closed subhierarchy(^*^^'^^), 

- d/dt = k, f,,, + 2kl * k; f,,, 

' k; f* + - "z) 'oo * ("o " * k,) f*,, . (2.1a) 

d/dt = (n-2) k. . 2(k. . k. 

= {(n-2) kg + 2kJ f + 2(ko - kj) f , for n>2. (2.1b) 
n n+1 
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A closed set of equations can similarly be obtained for f j , for 
ra n 

various j, m, n (where denotes j separating sites of unspecified 

occupancy). These f's couple through their rate equations to f's for 

subconfigurations with additional empty sites adjacent to the empty 

clusters (i.e., to f's in this class with separations j and j-1 and thus, 

indirectly, to the f^ ). More generally, multiply disconnected empty 

configurations couple to f's for subconfigurations with additional empty 

sites adjacent to these empty clusters (and thus, indirectly, back to less 

disconnected, and connected empty subconfigurations). 

The shielding property of adjacent pairs of empty sites (used to solve 

these hierarchies) is best expressed mathematically in terms of the 

conditional probabilities q —r = f . ,/f , of (conditioned) a given (JO OtXT O 

(conditioning) o'. Empty/ filled conditioning sites ô/â will be denoted by 

*/a for typographic convenience. For example, if denotes an empty 

n-tuple of conditioning sites, then one has that q^^ j ̂  = q_,., 

for n > 2; j, m > 0, and that q^^^ (= q, say) = which is 

compatible with (2.1b). Thus one obtains 

n 

\ ^o*n-l ^°n-l 
for n>2 , (2.2a) 

m 

for n>2 (2.2b) 
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(further reduction is possible if m > 2) thus providing finite closed sets 

of equations for q. f^^. f^, ^oo^» ^0-^-0^^°'^^^- Clearly 

shielding further implies that the probability of any disconnected empty 

subconfiguration can be written in terms of q, f^^, and probabilities of 

the type f^ & ^ m ^ o'^j' a, a' = 0 or 00^^®^. All of these 

can be obtained by integrating a finite closed coupled set of 

equations^^^). 

In the next section we present exact results for f^, with s < 13, and 

thus for n^, with s < 11. These have been obtained from the simultaneous 

integration of hundreds of exactly truncated equations for connected and 

disconnected empty subconfiguration probabilities of the type described 

above. 

It should be realized that for the filling processes considered here, 

one can immediately write down an exact rate equation for any 

subconfiguration probability (though our exact truncation procedure has 

naturally led to emphasis on empty subconfigurations above). For example, 

we have that 

% = d/dt = k, 

i.j>l 

2(ki fooa2_i + "^2 faoag_i ) , for s>2 , (2.3) 

d/dt = d/dt = a, S°'j° 

i.j>l 

2(ki foga^o + kg ^aoa^o) * ' (2.4)  
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and note that the loss term in (2.4) can be rewritten using the identity 

f  =  f  +  f  =  f  + f  + f  
aoa^o oaoa^o aaoa^o oaoa^o oaaoa^o aaaoa^o 

One naturally compares (2.4,5) with simpler Smoluchowski-type coagulation 

(291 
equations^ ' which also have a gain term, corresponding to formation of a 

cluster of size s from coagulation of two smaller ones of size i and j 

where i+j=s (rather than s-1 as above), and a loss term, corresponding to 

destruction of a cluster of size s by coagulation with any other cluster. 

However, in the Smoluchowski equations, these terms appear as sums of 

products of appropriately sized cluster probabilities, in contrast to 

(2.4,5) where cluster-cluster correlations are clearly accounted for. Such 

correlations are, of course, incorporated in our exact solutions. 

A closer correspondence with the coagulation equations is achieved if 

one makes the so-called B approximation(10,31) (assume independence of 

lengths of consecutive blocks of filled and empty sites), in which case 

%1ÔP' '•«placed by q^—, and q^—. Then (2.4) becomes 

"s = ^ [:/2(2k, n, n^_, + k, n. n.) 

i , j> l  

- (kiMg + kg I n.) n^] , (2.6) 
i -1 
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where we have defined n^ = f^^ ^ooa^^aoa used (2.5) in writing the loss 
e» 

term. These approximate equations, with the replacement T n. = f , have 
i=l ^ 

been shown to give reasonable results for s = 1, 2, 3^^^^. 
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III. DETAILED CHARACTERIZATION OF THE FILLED CLUSTER-SIZE DISTRUBUTION 

In this section, we present detailed results for the filled s-tuple 

and cluster-size distributions for ID monomer filling with NN cooperative 

effects. In Fig. 1, we have displayed f^^^/f^ and "g+^/ng as functions of 

s (for various e), for the choice of rates = l:p:p2, with p = 6, 

2, 1/2, 1/6. The more extreme cases p = 20, 1/20 are shown in Fig. 2. 

Other choices of nonzero rates produce similar results. It is clear that, 

for each e, fg_^^/fg approaches a constant, x(9) say, as s + », where x{e) 

ranges between zero and unity. (In fact fg+^^^s very nearly constant, 

as a function of s, for moderate coopérâtivity.) Results presented below 

show that x(0) ~ pe, as e+O, and that 1-x(e) is asymptotically proportional 

to (1-e), as 8+1. Since the n^ = f^ are 2^^-order finite differences of 

the fg, it follows that also n_|^/n_ + \(9), as S-H», but that N^^^/n^ is 

more sensitive to low s deviations than f^^^/f^ (particularly when 0, and 

thus x(0), is close to unity). Since, in both cases, the convergence to 

asymptotic behavior is quite rapid, we can give accurate quantitative esti

mates of fg and n^ for a large range of s. 

Noting that f^+^/fg = , where denotes a filled s-tuple of 

conditioning sites, and suggestively denoting x(0) by q, , one has 
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Figure 1: Ratios (—)' and "s+i/ng ( ) as functions of s (for 

various 9, shown), for filling with NN cooperative effects with 

rates : kj : kj = 1 : p : and p = 1/6, 1/2, 2, 6 
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Figure 2: Ratios (—) and ig+l^^s ( ) (for various 0 ,  shown), 

for filling with NN cooperative effects with kg : : kg =1 : 

p : p2 and p = 1/20, 20 
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Since numerical results indicate that the series T fq^ -q^ 1 is 
i=l ®»i 

absolutely convergent (see Fig. 3), one concludes that the (and thus the 

n^) exhibit asynptotic (large s) exponential decay. Consequently, one can 

write 

F ~ C(0) X(0)^"^ and n -  C(o)[ l  -  X(0) ]^  X(0)^"^ ,  as S-H» ,  (3.2)  

where an infinite product expression for the function C(0)  can be obtained 

from (3.1). We note that monotonie decrease of the f^ and n^ distributions 

is guaranteed by (3.2) for large s, since x(0) < 1, and is only violated in 

the low p and s regime. 

One nontrivial quantity, characteristic of the cluster-size 

distribution, which can be calculated immediately after solving the minimal 

closed hierarchy (2.1), is the average cluster size (without 

site weighting), n^^, given by 

" sll ' ' h • 13-3) 

2 Using the identity n^ = A f^, one can readily show that (cf. Réf. 27) 

I, "s = foa = fo - 'oo • J, = "s = ' • (3-4) 
S-i S—i 

where f^^ = f^^ gives the fraction of sites corresponding to left (or 
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1/2 

12 3 4.5 6 7 8 5 6_ 7 8 

p=2 
1  2 3 4 5 6 7 8  3 4 5 6 7 8 6 7 8 

Figure 3: Quantities (A) s|q - q., |, (B) s|q - q ], and (C) 
%s ~s ~s-l 

^'Sxao ' Sxaa I ^ functions of s, for kg : : kg = 1 : p 
~s «-s-l 

: p2 with p = 1/2 (curves 1-5 correspond to 9 = 0.2004, 0.4971, 

0.7041, 0.8999, 0.9834, respectively) and p = 2 (curves 1-6 

correspond to e = 0.2023, 0.5020, 0.7014, 0.8992, 0.9973, 

0.99997), respectively 
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right) ends of filled clusters, i.e., the cluster density. The identities 

(3.3,4) are obviously valid for any site occupancy statistics. 

In Fig. 4, we have displayed n^^ = e/fg^, as a function of e, obtained 

from solution of (2.1) for a choice of rates :kjckg = l:p:p2, with 

various p. For p = 1, it follows trivially from (3.3,4) that n^^ = (1 -

e)"i. The P+0+ limit deserves special comment. It has been recognized 

previously that, here, filling occurs in three stages, of sites with zero, 

one, and then two already filled NN, respectively, so d/de f^^ is piecewise 

constant with values -2, -1, 0, since two, one, then zero, empty pairs are 

destroyed for each site filled, respectively^^*^*^^^. The stages end at 

coverages (l-e-2)/2, (l+e-2)/2, and 1, respectively. Thus in the first 

stage, one has f = 1-28, so f^, = e and n.„ = 1, which is obvious since 00 OA AV 
all filled sites are isolated. In the second stage where d/de f^^ = -1, 

foa is  constant  (obviously)  wi th value e*  = ( l -e-2) /2,  so n^^ = e/e*.  In 

the last stage, one has f^^ = 0, so n^^^ = 0/(1-0). It is also physically 

clear that as p-n», for fixed 9, since the p-w limit can be thought 

of as a single island growing (which thus has infinite size at any nonzero 

coverage). 

Although the percolation threshold 8 = is always trivially unity in 

ID, the nature of the divergence of n^^, as 0 0^, depends nontrivially on 

the cooperativity, and is of particular interest here. Specifically, we 

wish to determine the critical exponent, v, and coefficient. A, in the 

relation 

"av ~ A(8g-8)"^, as ( 3 . 5 )  
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av 

0.5 

0.2  0.4 0.8  

Figure 4: The average island size (without site weighting), = e/f^Q, 

as a function of coverage, e, for filling with NN cooperative 

effects with kg : kj : kg = 1 : p : p2 (and various p, shown) 
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First note that jf goes to zero faster than f^, then f^^ ~ f^ = 1 - e, 

as e 9ç, and thus we have A=1 and v=l. This is trivially the case for 

random filling where f^^ = f^, so n^^ = (e^ -0)"^. Furthermore, since we 

never have f^^ f^, as e 0^, it always follows that v=l. 

Explicit determination of both A and v is easily achieved after 

expressing the solutions of (2.1) in terms of q = and the reduced 

rates, p. = k./kg, as^^®^ 

foo = exp[2(l-Pi)(q-l)] and f^ = 1-0 = cfz G(q) , (3.6) 

where 

S(q)  =1 +/J du exp[2( l -Pi ) (u- l ) ] [2(p i -p2)u%' i -*2- l  + ( I_2pi+p2)u^i -p2] ,  

G(0) ,  a f in i te constant ,  i f  2pj  > pg» 

~ -P2 e2(Pi-l) in q, if 2^1 = p, , (3.7) 

When q+0 ( i .e . ,  t-x» or  0+0^ = 1) .  From these resul ts ,  i t  fo l lows 

immediately that 

n^y ~ l/fga ~ ~ e^2^/G(0), as 0*0g(t+"), for 2pj > * (3-8) 

and 

n^y ~ l/f^g (0^-9)"*^ ~ e^"*^2 e^z^/fkgt), as 0-*-0^(tx»), 

for 2&1 = pg . (3.9) 

p2-2pi 
However, since f__ ~ -s—s— f_ when 2p, < p,, one has that 

00 2p2-2pj 0 
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, as 8+8g(t*»), for 2pj < pg . (3.10) 

Thus, in contrast to the critical exponent, for 2pj < pg the 

proportionality constant. A, differs from its random filling (or 

percolation) value of unity. The growth of the average cluster size is 

exponential in time, for large t, with exponent for 2pj > pg 

(coalescence of clusters is the growth limiting step), and kj for 2pj < pg 

(addition to clusters is the growth limiting step). As we shall sometimes 

use the choice of rates k^ik^rkg = l:p:p2 (p^ = pgi/z = p), we note that 

2bi ^ pg corresponds to p ^ 2. 

Finally, in this section, we consider the behavior of the 

site-weighted average cluster size 

®av = » "s •  (3-11) 

and of the variance of the cluster-size distribution (without 

site weighting) 

= Ï  (s2 -  n2 )  n /  I  n .  (3.12) 
s=l ^ s=l ^ 

The main complication here is that both quantities involve the nontrivial 

sum 
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I s2 n = 0  + 2 I f , . (3.13) 
S=1 S=1 

For numerical estimates of (3.13), it is convenient to use the identity 

I fg+l = +5(e)]/[l - x(e)] , (3.14) 
s=l 

where 6(e) = I (f - x(e) f J = % - Sa* )" It follows that 
S=1 S=1 s CO 

00 

|g(8) |  < I  |q -  q 1,  which our calculat ions indicate is  rapid ly 
s=l s * 

convergent (see Fig. 3). Each term approaches zero as 8+1, and if we 

reasonably assume that 6(8)+0, as 8+1, then one has 

s ay ~ s2 n^ ~ 2[1 - x(8)] \ as 8+8^. = 1 . (3.15) 

In Fig. 5, we have plotted the standard deviation of the cluster-size 

distribution in units of the average cluster size (both without 

s i te weight ing) ,  i .e . .  

= ( I, s: "s - . (3-16) 
s=l 

as a function of 8. Since it appears that a/n^^ > 1, as 8+1, we conclude 

that 
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Figure 5: The standard deviation of the cluster-size distribution in units 

of the average cluster size (both without site weighting), 

a/n^^v» ^ & function of 0, for filling with NN cooperative 

effects with kg : : kg = 1 : p : p2 (and various p, shown). 

Clotted lines, in the high e regime, indicate presumed spurious 

behavior of the numerical integration for p = 6, 10 (the top 

line is for p = 10), and reasonable extrapolation for p = 1/10 

(excessive computer time limits integration here) 
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^av ~ Î, "s ~ 2/foa ~ ^"av ~ 2A(0^-0)-i, as = 1 , (3.17) 
s=l 

which, using (3.15), implies that (cf. Fig. 6 in the next section), 

1 - 1(8) ~ fgg ~ A-l(8^,-8), as 8+8^ = 1 . (3.18) 

Finally we note that for random filling, p=l, one has immediately from 

m ao 
(3.13,14) that I s2 n = 8(1+8)(1-e)"^ and so, together with J s n = e 

s=l ^ s=l ^ 
CO 

and Y n = 8(1-8), one concludes that n_ = (1-8)-*, s^„ = (l+e)(l-8)"i 
s_i a av av 

(see Ref. 27) and a/n^y = 81/%. 
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IV. ASYMPTOTIC ANALYSIS OF THE CLUSTER-SIZE DISTRIBUTION 

It is desirable to understand those structural features of the 

hierarchial equations which guarantee that fg+^^^s' "s+l^"s ^ 

and to develop a technique for analyzing such quantities as x(9) more 

directly. The strategy adopted here, which achieves these goals, involves 

deriving equations satisfied directly by x(9) and related quantities, by 

taking appropriate limits of the (suitably recast) hierarchy equations. 

Here we naturally start by considering the equation for q 
^s 

conveniently expressed in the form 

where, after some straightforward manipulation using (2.3), one has 

d/dt £n q^ = d/dt &n f^^^ - d/dt &n f^ (4.1) 

(4.2) 

On letting S-h», one obtains for x(e) = tim q, = q,_ , 
_ OOL. 

d/dt An qg^ = )-i-l] , 
<o ca 00 

(4.3) 

where we have assumed that various limits exist, including q 
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2im q ^ , and that, for j + k = s and j < k, one has q , - q , 
j,k^ ^j^k «j^k «j^k-1 

= o{l/s), as S+» {see Fig. 3). Calculations below support the validity of 

(4.3) and, thus, of these assumptions. One can check that, for random 

filling where q^ = q ^ = e, (4.3) has the required solution 9 = 1-

e"^^. In general, one must continue to derive an equation for q __ by 

considering lim d/dt An q_ . . One thus obtains (after invoking 
j,k^ ^j^k 

appropriate assumptions regarding existence of, and appropriate convergence 

to certain limits) 

d/dt tn ^ = k,[3{q^ a. ^ + Z*. a, I ' a-a 
«009 00 00 00 OO 00 oo 

Continuing in this way, one obtains an infinite coupled set of equations 

x(e) ^ -a... I,,»... — 

Since all these quantities clearly have zero initial conditions, it 

then follows that their initial time rate of change, as prescribed by the 

above equations, are given in indeterminate form. For example. 

d/dt in ~ kj/q^ ^ (or d/dt q^ - k, q /q, ) . 
00 00 00 oo 00 oo CO 

at t + 0 . (4.5) 

For all other q's where a central group of a single 'a' site, and several 

'a' and sites are bordered on either side by an o^, there are an 
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infinite number of indeterminate terms. Most of these can be "paired" 

(denoted pt below) as a rate times a difference of reciprocals of q's 

both with i o-sites next to the a-site (cf. the last term in (4.4)). The 

form of the remaining terms depends on the state of the adjacent pair of 

sites on either side of 'a', and is thus completely enumerated by the 

following: 

d/dt £n q,,jyjjaew ~ '^z^^.^aaooa.# * *^2ooaow '^z^'^^ooaaa.. 

• ''l'O-oa-m.. • "/"..«.-a... + • 

'..oaa.-.. - "j/l.-aaoa— "a/l.-oaaa— * "I'^.-ooaa— 

• "i/'-aa-.-.. - • 

d/dt tn 

-  k o / q . -  k o / q . +  w  .  

»" - kz/q.-aa.... + k,/q..„j... - k;/q..,,__.. 4- pt , 

d/dt in q„^j... - k:/q.+ kj/q„^^„ - k,/q.* pt. 

d/dt tn q.- k,/q.* Pt , as t » 0 . (4.6) 

Here the dots indicate that the same configuration of 'a' and sites, 

bordered by an o^, appears in each q. 
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It is clear that a choice of k's satisfying q ~ kt, as t+0, consistent 

with (4.6), is given by 

"..-a-.. - "o' : "..aa-.. • " M - O-?) 

Finally, returning to (4.5), we conclude that q ~ k.t, as t+0. This 

additional information allows us to consistently treat the initial 

indeterminacy in the q hierarchy under consideration here, thus obtaining a 

well-defined initial value problan. It is worth noting that these 

hierarchy equations are also clearly consistent with the anticipated 

behavior qL_ , q ^ , ••• + 1, as t+«. 

Exact solution of these hierarcnial equations to determine, e.g., x(9) 

= q^ , is not feasible because of their complicated nonlinear structure. 

However to obtain approximate solutions, one could apply an n^^-order 

Markovian approximation wherein q's with the same conditioning 

configuration within n sites of 'a' are set equal (e.g., in such an 

approximation q^^ , ^ , ••• would be set equal for n=2). 
40 00 4D OB OO 

The resulting n=2 estimates of x(e) = q^ , shown in Fig. 6, are quite 

accurate for moderate cooperativity (except near 8=1). We note, however, 

that better estimates of x(0) can be obtained from using the exact q_ , or aCCQ 

better q^ (except for extremes of cooperativity, and low 9). 
ddCUX 

This analysis is particularly significant, however, in that it 

provides a direct demonstration that for k^ * 0, x(9) = &im fg+i/fg exists 
S-X» 
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Figure 6: The as^ptotic decay rate, x(0) = lim f, as a function of 

coverage, e, determined from exact calculation ( ) and 

2"^-order Markovian trunction (—), for filling with NN 

cooperative effects with k^, : kj : kg = 1 : p : (and various 

p, shown). Termination of the dashed lines indicates that 

certain probabilities in the Harkovian truncation become 

unphysical at these points 
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as a well behaved function of e, nonzero except when 0=0. It is also 

clear that the origin of this behavior is the appearance of 0(s) creation 

terms (proportional to kg) in the rate equation (3.4b) for f^. (We can 

also conclude that if kg = 0, then tim fg+i/fg = 0 for all e; this case of 

noncoalescing clusters is treated in detail in the following paper^^S).) 

As we shall see in the next section, this new-found insight can be used to 

predict the asymptotic behavior of the filled cluster-size distribution for 

other more complicated ID filling processes. Perhaps the most important 

aspect of this analysis, is that the basic technique extends to higher 

dimensions (and even to other dynamic processes on lattices for which 

hierarchial rate equations apply) to provide some fundamental insights into 

the characteristics of the distribution of filled sites (see Appendix). 
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V. DISCUSSION AND EXTENSIONS 

Here we have solved tne master equations (in hierarchial form) to 

provide the first extensive, exact anal^ic investigation of the filled 

s-tuple and filled cluster-size distributions for a ID irreversible, 

cooperative filling process (specifically, monomer filling with NN 

cooperative effects on an infinite, uniform lattice). The solution 

procedure, as outlined by Plate et exploits shielding and coupling 

features of the hierarchy specific to irreversibility. Our calculations 

cover a sufficiently extensive range of size, s, to clearly demonstrate the 

transition to (large s) asymptotic exponential decay in the above 

distributions (when all rates, kare nonzero). The analytic approach 

allows natural investigation of the coverage or time dependence of such 

quantities as the average cluster size, and asymptotic exponential decay 

rate, x(0). Further it facilitates a second important component of this 

work, specifically, development of a novel approach for extracting directly 

from the suitably recast hierarchial equations, asymptotic properties of 

the cluster-size distribution such as the exponential decay rate, x(e). 

Clearly the asymptotic exponential decay in this model is associated 

with the occurrence of 0(s) gain terms in the filled s-tuple, f^, rate 

equation. This occurs provided kg * 0 so clusters can coalesce. More 

generally, for any ID irreversible filling model where "clusters" of size s 

can be created by filling the gap between (coalescence of) "clusters" of 

size Sj and Sg (where s^ + Sg = s-1 and 0 < Sj < s-1), analogous 

calculations suggest one still has asymptotic exponential decay of the 
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"cluster"-size distribution. Liggett's arguments (see Introduction) 

support this claim as they apply to filling with arbitrary range 

cooperative effects, and all rates nonzero. The following results show 

that it has even more general validity. 

For ID monomer filling with NN blocking and 2"^-NN cooperative effects 

(so now the rates, k-, refer to the number i = 0, 1, 2 of filled 2"^-NN), 

clusters of alternating empty and filled sites develop. We naturally let 

fg (Hg) denote the probability of the configuration oaoa..-oaoao or, 

equivalently, aoa*««oaoa (ooaoa»»*oaoaoo) where s a-filled sites appear. 

Here clusters can either grow together in phase (i.e., ••oaoaoooaoa.«, 

where the center site will fill provided kg * 0, i.e., coalescence can 

occur), or out of phase (i.e., .«oaoaooaoa.., creating a permanent domain 

boundary)(3*). Exact hierarchial solution is again possible^^*'^^), but 

since an empty 4-tuple (rather than pair) of sites is required to shield, 

many more independent quantities exist, and must be determined from exactly 

truncated equations (specifically q = f^ /f^ = e'^o^, n>4; f^ , 1 < i < 
n+1 n i 

4; and f„ i ̂ jn n _r where 1 < j., j_ < 4, 1 < i,,i,, ••• < 
Jl Ig J2 

3). For kg * 0, this model does fit the above criteria for asymptotic 

exponential decay of f^ and n^. This is confirmed from the results shown 

in Fig. 7, obtained from a very extensive exact truncation calculation. 

Furthermore, if f^+^/fg + x(9), as S-H», then the analogue of (4.3) becomes 

d/dt tn X(0) = k2[(q..-a-a-a-a-o-..^ ^ " 1] ' ^^.1) 

The behavior of the average cluster size without site weighting. 
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Figure 7; Ratios (—-) and n^+^/ng (—) (for various e, shown), 

for filling with NN blocking and 2"^-NN cooperative effects with 

rates k^ : k* : kg = 1 : p : and p = 1/2, 1, 2 
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straightforwardly determinedfrom with f^^^ = foQ-fooo' 

is shown in Fig. 8. It is appropriate to recall the equivalence of this 

processes to ID dimer filling with NN cooperative effects^^*), and note the 

compatibility of our results with those from earlier simulations for ID 

random dimer filling^^^. 

Finally we note the applicability of the technique of Section IV to 

higher-dimensional irreversible filling processes (see Appendix), and 

anticipate that it will be useful for consideration of a variety of other 

dynamic processes on lattices. 

Our model could be modified so that nucleation is enhanced at (or 

confined to) a distribution of sites specified either defective or 

initially filled, making it similar to those used to describe Irreversible 

kinetic gelation^^^^ (particularly if we consider bond rather than 

site filling). We leave such considerations till later work, but note that 

we expect the long-range connectivity transition of kinetic gelation to be 

in a different universality class from that of the filling processes 

considered here. 
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Figure 8: The average Island size (without site weighting) n., « e/f , 
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as a function of coverage, for filling with NN blocking and 2 -

NN cooperative effects with k* : G; : kg = 1 : p : (and 

various p, shown). When p = 0+, the process occurs in three 

stages corresponding to filling of sites where the number of 

filled 2"^NM Is zero [0 < e < 8% * 0.2746, n^^ = 1], one < 0 

< 02 - 0.3243, n^y » e/ej], and two [8% < 0 < " 0.4011, n^^ = 

o(e, + - «)-']. since =• 1-2 e'", we have tint 

(1-2 
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APPENDIX: IRREVERSIBLE COOPERATIVE FILLING ON A 20 SQUARE LATTICE 

Consider the irreversible filling of sites on a square lattice with NN 

cooperative effects. Let k^-, i =0, 1, 4, denote the rates for 

filling sites with i (already) occupied NN. Rate equations can be written 

down intuitively for any subconfiguration probability^^). For example, 

using the obvious notation for subconfigurations, one obtains 

d/dt f = kg f + 4 kj f + kg (2f + 4f ) 

+ 4 ks f a + kt f a (D 
aoa aoa 

d/dt f = I (kg f + 2 kj f + k^ f , ] 
i+j=s-^ - - ®-

i,j>l 
s i+j=s-l a^gaj a^gaj a.gaj 

+ 2 (kj f + kg f + 2 kg f 
05^3.1 ^8S-1 OgS-l 

+ kg f + 2 kg f _ + k^ f _ ) . (2) 
°3=s-l Ts-l %.l 

where a^ here denotes a horizontal n-tuple of filled sites, and we have 

exploited various lattice group symmetries. Equation (2) should be 

compared with (2.3). 

If we define f^ = f^ , then again one can consider the behavior of 

^s+l^^s ^ ^ naturally start by writing down the rate equation for 
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and verify that its structure is compatible with the 

existence of a finite, nonzero (except when 8=0) limit x(e) = lim q^ 
s^ ^s 

q , say (cf. Section IV). This is seen to be the case since, after 

taking the s+* limit, one obtains 

1 d/dt in q,, = kg [^— - 1] - 2(k2-k^) - q^ a^ ] 

+ (k, - 2 ka + kj " 9. &, ] (3) 
ao 

 ̂^ M.. ̂  S|.j' •"  ̂

f, /f, , , (L a = f, a, /f, , , (assuming existence of, and 
'i+i+j Si-'j 

appropriate convergence to these limits). Note that one can always factor 

these q's in terms of those with a single a-(filled, conditioned) site, 

e.g.. 

q a  = q a  q a  s o q a  = q a  q  .  ( 4 )  
=iâ=j «i^j ®i^j ««â«» 

Support for the proposition that the limits q , , q a , ... exist and 

are nonzero (except when 9=0), which is necessary for finite, nonzero q 

to exist, comes from writing down equations for q , , q a , ... 
"i-'j 

aa 



www.manaraa.com

210 

and examining the i,j+- limit. The resulting equations involving new, more 

complex q's with infinite numbers of filled conditioning sites, and thus an 

infinite hierarchy is generated in this fashion. Although the existence of 

well-behaved solutions is difficult to prove rigorously, it seems 

reasonable based on the structure of these equations, and particularly the 

capability to consistently handle the indeterminacy in the initial slopes. 

The quantities describing the distribution of lengths of (horizontal) 

linear strings of filled sites are clearly the n^ = f^^ ^ = f. - 2f_., + 
S ODGO S S^I 

^s+2* course, will only reflect the distribution of cluster 

linear dimensions for fairly compact contiguous clusters. Since our 

arguments above indicate that f^^^/f^ x(e), as s+«, (compatible with 

Liggett's arguments described in the Introduction^^^)) it follows that also 

"s+l^"s* ^ Thus for these nontrivial 2D filling processes, 

which are not amenable to exact solution, we anticipate that this 

distribution decays like n^ ~ K(0) x(e)^~^, as s-w». To obtain estimates of 

x(e), which ranges from zero to unity as 9 varies over this range, we could 

subject the above mentioned q hierarchy equations to Markovian-type trunca

tion approximations. Of course, x(0) = 9 for random filling, and we expect 

that these Markovian-type approximations will give reasonable estimates for 

weakly or moderately cooperative filling (cf. Section IV). 
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ABSTRACT 

We consider processes where the sites of an infinite, uniform, 

one-dimensional lattice are filled irreversibly and cooperatively, with the 

rates, k^, depending on the number, i = 0, 1, 2, of filled nearest 

neighbors. Furthermore, we suppose that filling of sites with both 

neighbors already filled is forbidden so k2=0. Thus clusters can nucleate 

and grow, but cannot coalesce. Exact truncation solution of the 

corresponding infinite hierarchy of rate equations for subconfiguration 

probabilities is possible. For the probabilities of filled s-tuples, f^, 

as a function of coverage, e = fj, we find that = O(0)s + C(0,s), 

where C(9,s)/s + 0, as S-H». This corresponds to faster than exponential 

decay. Also if p = k^/kg, then one has D(e) ~ (2p0)"i, as e+O. The filled 

cluster-size distribution, n^, has the same characteristics. Motivated by 

the behavior of these families of f^/f^^^versus s curves, we develop the 

natural extension of f^ to s<0. Explicit values for f^, and related 

quantities, for "almost random" filling, kj,=kj, are obtained from a direct 

statistical analysis. 
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I. INTRODUCTION 

As in the preceding paper^^\ we consider a class of filling processes 

where the sites of an infinite, uniform lattice fill, o+a, irreversibly 

with adsorption rates, k., depending on the number, i = 0, 1, * z, of 

(already) filled nearest neighbors (NN) to the site being filled (z is the 

lattice coordination number). Throughout f^ will denote the probability of 

a subconfiguration, a, of sites each specified empty 'o' or filled 'a'. 

For an infinite lattice, these satisfy an infinite hierarchy of rate 

equations which can be written down intuitively. The f rate equation 
c 

includes gain and loss terms corresponding to creation and destruction of 

ff, respectively, by single filling events, taking account of all allowed 

configurations of the influencing IW sites to the one being filled (and 

weighting with the appropriate rates)We shall assume that the 

lattice is initially empty, and note that time evolution via the 

hierarchial equations preserves invariance of f^'s under all lattice space 

group operations (including translation and reflection). We shall some

times also consider conditional probabilities q —r h f ^ ,/f , of (condi-aa a+a a 

tioned) a given (conditioning) cr'. For convenience, empty/filled condi

tioning sites o/i will be denoted by */a. Also o^(a^) will denote empty 

(filled) n-tuples of consecutive sites. 

Here we focus on cases where some of the k.. are zero, in particular, 

where k- = 0, for i > i*, so the lattice will not fill completely. The 

saturation value of the coverage, e, at infinite time, is denoted by < 

1. Clearly i =1 corresponds to random filling with NN blocking, so all 
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connected clusters of filled sites contain only one particle. The 

corresponding values of 0^®^ have been determined exactly for a ID lattice 

as {l-e~2)/2 = 0.4323^^*^^, and approximately, via analytic methods, for a 

2D hexagonal(2D square^^^) lattice as 0.375 (0.365). When i* = 2, so 

kg, kg, ••• = 0 (and we set p = kj/k^), the process involves competition 

between birth and growth of clusters, where the clusters cannot coalesce. 

Addition to clusters occurs at boundary sites with only one filled NN, so 

branched clusters develop in two or more dimensions (see Fig. 1). Such 

clusters should be compact (cf. Refs. 1,5) rather than fractal-like (cf. 

S At 
Réf. 6). The saturation coverage 0 (p), as a function of p, is shown in 

Fig. 2 for 10 linear, 20 hexagonal, and 2D square lattices. Note that aim 
P-K. 

0^^^(p) gives the mean coverage within an individual (infinitely large) is

land provided that, at saturation, as p-*», an infinitesimal fraction of 

lattice sites are at boundaries between clusters. When i* = z-1 (i.e., 

k^_^ = k^ =0), empty adjacent pairs of sites and single empty sites, 

surrounded by filled sites, remain at the end of the process. When i* = z 

(so only k^= 0), then only isolated empty sites remain, and if kg = k% = 

• • •  =  ̂ 2 - 1  ( " a l m o s t  r a n d o m "  f i l l i n g )  t h e n  0 ^ ^ ^  =  z / ( z + l ) .  

In this paper we consider, in detail, the ID filling process where kg, 

kj * 0, but kg = 0 (i.e., i* = z = 2), so the growing contiguous clusters 

of filled sites cannot coalesce. Such a rate regime sometimes occurs in 

the consideration of irreversible cooperative reactions at the sites of a 

(10) polymer chain^^^. The method of exact truncation solution of the 

hierarchial equations for arbitrary kg, k^, k^, exploiting a shielding 

property of adjacent pairs of empty sites (see preceding paper and Refs. 
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4--i 
1

—
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Figure 1: Growth of noncoalescing clusters where rates, , for filling of 

sites with i filled NN are zero for i > 2. Illustrative partial 

coverage and saturation configurations are shown for a ID linear 
and 2D square lattice 



www.manaraa.com

220 

0.9 sat  

0.7 

0.6 

0.5 

0 .8  1 0.6 0.4 0.2  0 
P / ( 1 + P )  

Figure 2: The saturation coverage for noncoalescing clusters 

grovm as in Fig. 1 with rates k^/kg = p, k^/kg = 0 for i > 2. 

Results for the ID linear lattice are exact^^*^^. Results for 

the 2D hexagonaland 20 square^^^ lattices are obtained from 

approximate hierarchy truncation. (The truncated hexagonal 

lattice equations are identical to the exact z = 3 Bethe lattice 

equations, so the limitations of the corresponding results 

should be clear^*)) 
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2,3,9), can be applied to this special case. Results presented here from 

such calculations clearly indicate a faster than exponential large size s 

decay of the filled s-tuple probabilities, f^ = f^ , and of the (filled) 

cluster-size distribution, n^: f^^ f^- 2fg^j^ + f^+g* Furthermore they 

suggest development of natural extensions of f^ and n^ to s < 0 to 

"complete the picture". 

In Section II, we consider "almost random" filling, kg = kj, k^ = 0. 

We have noted previously^^^ that a direct method of solution of the 

hierarchy (as an alternative to truncation) is available here. 

Furthermore, because of the relative simplicity of this single rate 

process, it is possible to directly determine the statistics. In Section 

III, we present extensive exact numerical calculations pertaining to the 

distribution of filled s-tuples (and, thus, the cluster-size distribution) 

for arbitrary kg, kj (and kg = 0). The behavior of the average cluster 

size (without site weighting) is detailed. The structural features of the 

hierarchy leading to the observed "faster than exponential" asymptotic 

decay of f^ (or n^) for large s are elucidated in Section IV. 

Specifically, we find that f^^^^/f^, "G+^^^S ~ AS S-H», and a 

novel method for the direct analysis of D(e) is presented. Formal coverage 

(density) expansion techniques, appropriate to this process, have been 

developed previously, but we provide, for the first time, in Section V, 

examples of explicit (and generic) expressions for the first few expansion 

coefficients for probabilities of filled s-tuples of arbitrary size s. 

Since results of Section III show that fg/fg+2 versus s curves approximate 

a family of straight lines nearly intersecting at some negative s value. 
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this motivates the development of a natural extension of f^ to s<0. Den 

sity expansions provide a natural mechanism to achieve this, and we 

indicate an alternative approach via extended truncation techniques. In 

Section VI, we summarize our findings, and present some corresponding 

results for a version of the more complicated ID process of monomer fill 

with NN blocking, and 2"^-NN cooperative effects. 
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II. CLUSTER-SIZE DISTRIBUTION FOR ID "ALMOST RANDOM" FILLING 

kqzk^zkg = 1:1:0 

For the special choice of rates kg = kj (= k, say), kg = 0, 

corresponding to "almost random" filling, the process has some simplifying 

features which allow certain specialized methods of analysis to be 

implemented, as discussed below^^*^). However, we expect (and shall see in 

Section III) that the qualitative features of the f^ (or n^) distribution 

are preserved for k^^kj (and k^O). 

The standard hierarchial truncation procedure for NN cooperative 

effects, which is based on the shielding property of empty pairs of sites 

and is used in the next section where kg*kj, can of course be applied 

here^^"^'^^. Alternatively, one can exploit certain special features of 

"almost random" filling, specifically, that f = n > 2, together 
n 

with the highly restricted nature of the spatial correlations, to obtain 

exact solutions to the hierarchy (see Ref. 7). (Here the probability of 

any empty subconfiguration can be factored in terms of f^ , fg ^, 

f0-0-0-0* (where - denotes a single site of unspecified state.) 

A more direct and efficient approach for calculating subconfiguration 

probabilities for almost random filling follows from the observation that 

this process can be obtained from random filling (with rate k) by 

extracting, for each time t, the subensemble of "legal" fillings, where no 

site fills after both its NN are filled. To determine the probability, 

f^^j, that the n sites {n} are filled at time t, it is convenient to 

introduce the extended set, {n }, including {n} and adjacent sites (so n > 
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n+2). Then clearly given by the probability measure associated with 

those random fillings on {n*}, with {n} filled at time t, such that {n} has 

filled legally. The calculation is simplest for the saturation value, 

f{n}* ^{n} satisfies f^®j = N^^j/n*!, where is the number of 

ways (counting different orderings) of filling {n*}, such that sites in {n} 

fill "legally". The simplest and, here, most pertinent example is the 

saturation value of f^, f|®^ = Ng+g/fs+Z)!, where the number of 

ways of filling s+2 sites by clustering around any of the s+2 possible 

nucleating sites. Clearly the number of ways of clustering about the i^** 

site in an m-site cluster is so = J Cili) " 2"*"^, and thus one 
i =1 

has 

" (s+2)! ' " 4^ (linear) . (2.1) 

Me now expand on this calculation to obtain the probability, f^, of a 

filled s-tuple at time t by considering various filling scenarios for the s 

sites of interest together with the ones on either end: (a) if both end 

sites are filled at time t, then we have exactly the same ordering 

constraints on filling as in the saturation calculation (2.1). Thus the 

contribution to f^ here is given by = (1-e"^^]^*^ Ng+2^(s+2)!. Here 

the first factor gives the random filling probability that s+2 sites are 

filled at time t, and the second accounts for ordering constraints; (b) if 

exactly one end site is empty at time t (probability 2e"*^^), then the 

(conditional) probability that the other s+1 are filled is clearly so 
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ic^ 
that contribution to here is 2e" Pg+l* if both end sites are empty 

at time t (probability then the (conditional) probability that the 

middle s are filled is clearly P^, and the contribution to f^ here is e"^^^ 

Pg. Adding these contributions, we conclude that (see Ref. 10) 

f ;  S . ^ [1-  [1  ̂  S e-k t  4.  _ (2 .2)  

The ratio, fg/fg+i* is plotted as a function of s (for various e) in Fig. 

3. This plot strongly motivates the extension of f^ to unphysical, s<0 as 

is automatically provided by (2.2), to "complete the picture". Note that 

(2.2) also implies that fg/fg+2 ~ ^(1 - e"^^) ^s + 0(1), as s+®. 

Analogous calculations can be performed for probabilities of more 

complex subconfigurations such as those containing a filled s-tuple and a 

finite number of other filled sites (of fixed position relative to a^), 

e.g., f^ = f, , f, f, •••. These exhibit the same type of 
S s" s" 

faster than exponential decay, when s>«, as seen in (2.2). Clearly the 

most complicated part of these calculations is the combinatorics which are 

closely related to the saturation statistics. Thus below we list some more 

complicated examples illustrating the general characteristics of the 

combinatorial technique. 

Consider first the saturation probability for a^-a (where - denotes a 

single unspecified site). The appropriate extended configuration here 

consists of sites in a^-a as well as the one to the left, i, in the gap, j, 

and to the right, k. Let denote the appropriate number of ways of 
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filling this extended subconfiguration, so f^*^_ = M./(s+4)!, and let N 
Og"® s n,ni 

- C"^) denote the number of legal ways of filling separated clusters 

of n and m sites. Then in accordance with the rules prescribed above, 

has contribution from when: (a) i fills last (b) the separated 

(s+l)-cluster (i, a^) and 2-cluster (a, k) fill legally, then j fills 

[Ns^l g]; (c) the (s+2)- cluster (i, a^, k) fills, with a^ filling legally, 

and 'a' fills at sometime during this process, then k fills [(s+3) • 

Thus one obtains 

"s = "s-1 + %+UZ + (s+3) Ns+2 = (s2 + 5s + 8) 2^+^ , (2.3) 

where solution of the recursion relation (for either increasing or 

decreasing s) has used that = 56 (from a direct enumeration). From 

similar calculations, one can show that = P^/(s+5)!, where 
DG "DEL S 

Pg = Pg.i + Ng+i 2 + = g(s3 + 9s2 + 26s + 30) 2^*^ , (2.4) 

using = Mg = 176, and that f^^^ = Qg/fs+e)!, where = 2(s+5)[(s+4) 

"s-l + "s]' 
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III. CLUSTER-SIZE DISTRIBUTION FOR ID FILLING 

WITH NONCOALESCING CLUSTERS 

kfltk, :k, = l:p:0 0'*1 '"^2 

Extensive calculations involving truncation of hierarchies for 

probabilities of connected and disconnected empty subconfigurations for 

this process lead to the results shown in Fig. 4 for f^. Specifically, we 

have displayed fg/fg+i as a function of s (for various 8) and p = 1/5, 1/2, 

2, 5. The behavior of the family of fg/fg+i vs. s curves (after connecting 

physical values for s = 1, 2, •••) suggests that we attempt to "naturally" 

extend f^, and thus fg/fg+i* to nonphysical s = 0, -1, -2, •••. This is 

discussed in more detail in Section V and the Appendix where the special 

behavior of the cases p = 1/2 and p = 1 will be elucidated. It appears 

that, for each 0, fg/fg+2 ^^nptotes to a line of constant slope, 0(8), as 

S-X». It is clear, from Fig. 4, that D(e) is infinite at 8=0 and decreases 

monotonically with increasing e. 

Specifically, 0(8) is defined by the relation 

where C(8,s)/s +0, as S-H». Equation (3.1) can be rewritten in the form 

fg/fg+l = 0(8)s + C(8,s) (3.1) 

«s+l - (1 + (3.2) 

to clearly demonstrate the faster than exponential asymptotic decay. Note 
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that, typically, the factor * (1 +does not approach a constant 

as s—. [If C(8,i) ~ C(0), as i—, then (1 + ~ ^C{e)/D{9)^ as 

S-H». For example, for "almost random" filling at saturation = 2/3, 

D(0^®^) = 1/2 and C(8^^^) = 3/2.] Clearly n^ = f^ - + f^+g ~ fg, as 

S+», exhibits the same behavior in this limit. To obtain the asymptotic 

behavior of f^ or n^ as a function of time, we must simply substitute the 

exact expression for 8 = 0(t) into (3.1,2)^^"^^. 

The large s asymptotic behavior of f^ (and n^) exhibited here is quite 

different from the exponential decay characterizing cases where clusters 

can coalesce (k^ * 0)^^^. The faster decay of the cluster-size 

distribution (or shift in weight to smaller clusters), when k2=0, is not 

surprising since here smaller clusters cannot coalesce to form larger ones 

and, thus, remain frozen into the occupancy distribution. 

Solution of the minimal closed hierarchy for f , using the shielding 
n 

property of empty pairs, provides exact results for f^, f^^ and f^ = 
n 

f^^ q""^, for n>2, where q = e"*^o^ (1-3,7) Consequently, we can 

immediately determine the average cluster size (without site weighting) 

"av = J, "s = 8/foa ' (3.3) 
S —1 s —1 

as a function of coverage or time, since 8= 1 -  f ^ ,  f ^ ^  =  f ^  -  f ^ g .  A t  

saturation 8 = 8^^^, since f^^ = 0, one has n^^^ = 8^^^/(1-8^*^). In 
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Fig. 5, we have shown n^^, as a function of 0 ,  for various p. Note that 

p*0+ results in two stage filling of sites with zero, then one filled NN, 

respectively, and ng^-Ko, as p+- (cf. Refs. (1,2)). 
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IV. ASYMPTOTIC ANALYSIS OF CLUSTER-SIZE DISTRIBUTION 

It is desirable to understand those structural features of the 

hierarchy determining the asymptotic behavior of f, "s+l^"s ~ 

(D( 0 )s)"i, as s-H», here, and to develop a technique for determining 

asymptotic quantities, such as 0(8), more directly. The strategy adopted 

here is the same as that of the preceding paperand involves taking 

appropriate limits of the suitably recast hierarchy equations. It will be 

convenient, in the following, to set = 1. This just corresponds to 

transforming to a chemical time scale, t' = kgt, and thus obviously does 

not affect the statistics. 

The prime quantity of interest here is the asymptotic slope, 0(0). 

Thus one naturally attempts to obtain an equation satisfied by 0(8) 

directly. We begin by recasting the equation satisfied by q = q__ = 
^ *"s 

^s+l^^s ^ suitable form motivated by the identity q-i - q-i^ =0(8) + 

AC(8,S). Here denotes a filled s-tuple of conditioning sites, and 

AC(8,S) = C(8,s) - C(8,S-1). Since 

d/dt qj^ = - qj^ d/dt an q^ = - q^^[d/dt tn f^^^ - d/dt m f^] , (4.1) 

where d/dt f_ = 2pf_, = 2p[f, - f. - f, = + f, 1, one can show 
s ooag.i ag-l ®s S+1 

that 
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(2p)-l d/dt (,;ii - ,-1) = (q;l - q;lj) ((q-l - ,-lj) - (,;1 - g^lj)] 

+ ("s+Z - 1s+l) 

- %h [CJfl - + "s'-l' - (S^il - * 9^1)] • 

(4.2) 

In (4.2), we have set = fg+^/f s+l/^a-a^ = ^s/^a-«3' 

= Qg-o 0(8 )s + K(8,S) (4.3) 

where K(9,s)/s +0, as s+». The existence of a finite limit q. = &im 
S+» 

q, is supported by exact numerical calculations (see Fig. 6), and will be 
a-Os 

discussed further below. In general, we anticipate that q^_^ varies 

monotonically from zero, when 8=0, to unity, at saturation. 

To procédé further, we must make some additional assumptions about the 

behavior of C(0,s) and K(0,s). First we note that if AC(9,S) >0, as s-X», 

then -q^^)+ 0(8), as s-x», and so (4.2) does, in fact, become an 

equation for 0(8) in the s^ limit. Second, we note that if A2 C(8,s) = 

C(9,s)  -  2C(8,s- l )  +  C(0,s-2)  and A2K (0 ,S )  sat is fy  SA2C (8 ,S ) ,  SA2K (8 ,S )  +  

0, as Sx», then the last term of (4.2) vanishes in this limit. Clearly one 

also has that qJ^(qg+2 - q^) » 0, as s-x», from the assumption that 

C(8 ,s)/s+0, as S-X». [We remark that AH(S) + 0, SA2H(S) + 0, as s •»• », are 

satisfied by any function H(s) = k s° where o<l, and since, from numerical 
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results, the functions C(8,s) (see Fig. 7) and K(0,s) (see Fig. 8) do not 

appear to have any oscillatory behavior, the above assumptions seem 

reasonable.] Thus we conclude that 

d/dt 0(6) = -2pD(e)2 (1 - ) , (4.4) 

which, since D(0)-i = 0, is conveniently rewritten as 

d/dt (0(8)-^) = 2p(l - ) . (4.5) 

The form of (4.5) is consistent with our assertion that q, = 1 at a-o^ 

saturation. Since q_ = 0, when e = 0, we conclude, from (4.5), that 

D(8)-i ~ 2pt, as t+0, and since de/dt = f^^^ + 2pf,^^, so 8 ~ t as t+0, it 000 AOO 
follows that 

80(8) ~ "2^ , as 8+^0 . (4.6) 

One naturally continues to derive an equation for qg_^ by starting 

with 

d/dt in q, = d/dt in f, , - d/dt zn f (4.7) 
*-*s ®"®s S 

Gain terns from filling of the disconnected a-site in f. , present no 
S  
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difficulty in the S-HO limit, where they can be written in terms of q. , 

and q . The difference in gain terras from filling of the 
ce 

rightmost a^-site in f^_^ and f^ approaches zero, as s-x», provided 

, - a - V  . - a ' - . a - ' a  , a )  »  T h e  l a t t e r  c a n  b e  
S-1 S-i S-1 S-1 

easily verified for almost random filling at saturation, and seems reasonable 

in general. Corresponding cancellation of gain terms from filling of the 

leftmost a^-site in f, , and f, , as s*», is less clear. However direct s a-a^ a^ 

verification is again possible for almost random filling at saturation, and 

truncation results suggest general validity. One should now continue to 

derive equations for such quantities as qg__^ , q^g^_^ , etc. 

Finally we note that the above analysis of q, can be circumvented 

by observing that Fig. 8 suggests qg_^ 0(0) is (at worst, almost) constant, 

i.e., 0 independent. Using (4.6) and assuming that qg_^ ~ 0, as 0+0, it 

1 -1 
follows that this constant is Substituting qg_^ = [2pD(0)] into 

(4.5) and integrating yields 

D-i(t) = 2p(l-e-t) , (4.8) 

which is consistent with our exact numerical results (to within the 

substantial uncertainty of D values), and recovers the exact closed form 

results of Section II for "almost random" filling, p=I. 
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V. RESULTS FROM THE DENSITY EXPANSION TECHNIQUE 

Formal density (coverage) expansion techniques have been developed 

which apply to general irreversible cooperative filling processes, 

including the one of interest here. (See Ref. (11) for a detailed 

discussion.) We now give the first demonstration of how these can be used 

to obtain explicit, and generic expressions for the first few expansion 

coefficients, for probabilities of filled s-tuples of arbitrary size, s. 

Again we set kg = 1, so kj = p. 

One starts by writing down the hierarchial rate equations for 

subconfigurations with all sites specified filled and using conservation of 

probability to close this set. One thus obtains. 

= 1 + (2p.3)f, + (2-2p)faa + (l-2p)fa_, + 

d/dt f; = d/dt f = , 
S S*i 

= 2p[fs.i - - fa_a + fg+i] » for s > 2 , (5.1b) 
s-1 

To obtain density expansions, we divide (5.1a) into the rest of (5.1) and 

formally expand the denominators to obtain (d/dt)/(df^/dt) = d/de 

equations, e.g.. 
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d/de - f; - f,., - (2,-3) fj.l fj • —] - (5.2) 
s-1 

For the probability of n filled sites {n>, we postulate a density 

expansion of the form f.^. = I Then substitution into the 
p=0 ^ 

d/de equations, and equating coefficients of equal powers of e, yields a 

series of recursion relations for the coefficients For example, from 

(5.2), one immediately obtains 

sAg = 3) , (5.3a) 

(s+1) A^ = 2P[AJ"^ - Aq - Aq - (2p-3) AG^L AJ] , (5.3b) 

s h where Aq = Aq . 

In solving these relations, we need boundary values for s = 1, which 

come from the d/de versions [e.g., (5.2)] of the nongeneric equations 

[e.g., (5.1a)]. Using AJ = 5p q (since fj^ = e), (5.3a) can be solved to 

obtain 

A^ = 2^"^ pS-l/s! , (5.4) 

For any irreversible filling process, the lead coefficient in the expansion 

for some filled subconfiguration probability is given by the average of 
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products of reduced rates (i.e., rates scaled so that the rate for filling 

a site on an empty lattice is unity) corresponding to all possible ordered 

fillings creating the subconfiguration. (Each time a site is filled, an 

appropriate reduced rate factor is included.) The result (5.4) for 

should now be clear in light of the analysis leading to (2.2), i.e., = 

Ng p^'^/s!. Clearly, zeroeth order coefficients for separated clusters 

Is c 
factorize so Aq " Ag = A^. Next (5.3b) can be solved, and one can 

continue to solve (successively more complex) recursion relations for 

coefficients of higher order (with respect to p), and for more complex 

subconfigurations, yielding, e.g.. 

F, - [(SM)P - (S.2)] 

+ [3(s^ + lls^ + 30s + 8)p2 - 6(s^ + 8s^ + 18s + 2)p 

+ s(3s^ + 17s + 32)] ^ (5.5a) 

fa_a = 0^"*"^ + [4p^ - (s+l)(s2 + 5s - 2)p 

5 gS-l S-1 
+ (s+l)(s^ + 3s - 2)] (s4) l  8 

(5.5b) 
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Of course, results for "almost random" filling are obtained from (5.5) 

after setting p=l. Note that the relations (5.3) can be solved recursively 

for both increasing and decreasing s. In fact (5.5), with the convention 

that (s!)-i = 0 for s = -1, -2, •••, incorporate the latter solutions and 

provide density expansions for unphysical s<0 quantities (to be exploited 

below). 

Clearly density expansions provide natural extensions of f^, and 

related quantities, to unphysical s<0 (as strongly motivated by Figs. 3 and 

4 to make these plots more "complete"). A more fundamental and flexible 

formulation of this extension is based on the observation that the rate 

equat ions for  such quant i t ies as f^  ,  » ^o *  ^o a '  ̂o a o '  * ' *  

achieve a generic form when all of s, n, m, ••• > 2. It is thus natural to 

extend the use of these generic equations to lower integral values of these 

labels, thus providing the basic defining rate equations for the unphysical 

quantities. Formal solution via density expansions of these extended 

equations automatically recovers such results as (5.5) for s<0. However, 

the advantage of dealing directly with hierarchial rate equations for 

unphysical quantities is that one may be able to develop alternative closed 

form methods of solution, avoiding potential slow convergence 

problems^^^) of density expansions. Such extended truncation methods are 

descr ibed in  the Appendix ,  and have been appl ied to  generate va lues for  f^ ,  

with s<0, used in Fig. 4. We note, however, that the density expansion 

results were required here to provide initial values for various unphysical 

quantities, e.g., from (5.5a) one has fg = f_j^ = f g = 

, • • •  a t t=0.  
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VI. DISCUSSION 

We have considered irreversible, cooperative filling of an infinite, 

uniform, 10 lattice with rates, , depending on the number, i, of filled 

NN, and kg' 0 (so clusters cannot coalesce). Exact truncation solution of 

the complicated infinite hierarchy of rate equations describing time 

evolut ion here demonstrates that  probabi l i t ies for  f i l led s- tup les,  f^ ,  as 

well as the cluster-size distribution, n^, exhibits faster than exponential 

decay for large s. This is not surprising when compared with the 

corresponding exponential decay characterizing processes with coalescing 

clusters. In fact, it is apparent from analyses analogous to that 

presented in Section IV, that for any ID irreversible filling processes 

where no clusters coalesce, the same type of faster than exponential decay 

of the cluster-size distribution will occur. [Extension of this sort of 

analysis to higher-dimensional processes is also possible (cf. Réf. 1).] 

To support the above proposition, we now present some results for ID 

m o n o m e r  f i l l i n g  w i t h  N N  b l o c k i n g  a n d  2 " ^ - N N  c o o p e r a t i v e  e f f e c t s .  
A NH A 

Here, if k. denotes the filling rate with i filled 2 -NN, then kg = 0 (and 
A A ^ 
p = k j /kg) ,  so c lusters cannot coalesce. Thus both empty triples 

(••aoaoooaoa**) and empty pairs (••aoaooaoa*») remain at saturation marking 
A 

boundaries between clusters. Here we let f^ denote the probability of the 

subconfiguration aoaoa***oaoa, where s a-filled sites appear. In Fig. 9, 
A A . 

we have plotted fg/fg+2 versus s, for various 9 and p = 1/2, 1, 2. Clearly 
A A A  A  1  
fg/fg+2 ~ D(e)s + o(s), as S-H», and it appears that 9D(0) ~ as e+O, and 

D(e^®^) = 1/p. From a treatment analogous to that of Section IV (setting 
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kg =1) ,  one can show that  

d/dt[ô(9)-l] . 2$(1 . q,.,,,.... - • (6.1) 

A 

which immediately confirms the postulated low-e D behavior. Also the sum 

of the q's appearing in (6.1) is clearly unity at saturation, as required. 

If one assumes that these q's are identically equal, and that the 
A 1 A 

product(s) qD are constant C-^)» then one obtains D(t)-i = p(l - e ). 

This recovers the postulated saturation behavior, and is not inconsistent 

with our (uncertain) D estimates, but further analysis should be undertaken 

here. The behavior of the average cluster size^^^^, n^ = 0/f,^^, where OV OOO 

^00° - fooo' "9-
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APPENDIX: EXTENDED TRUNCATION TECHNIQUES; DETERMINATION OF WITH s < 0 

The primary goal here is determine exactly with s<0, by first 

obtaining » with j<-l, and then integrating the generic equations 

d/dt fg = , for integer s , (1) 
s-1 

(setting kg=l, so kj=p). We first illustrate the appropriate extension of 

the shielding property of an adjacent pair of empty sites. Let us start 

with the generic hierarchial equations. 

and extend their application to j = 1, 0, -1, -2, which, incidentally, 

closes this set of equations. Comparison of (2), for j = 1, with the 

f_ equation provides one consistency relation satisfied by f 
°ni®n 

and f^ , „ . Choice of initial conditions for the unphysical f , j 
VoVl "mYn 

= 0, -1, follow from the analysis presented below. The main point that 

we wish to emphasize here is that equation (2), for m, n > 2 and j integer, 

is clearly compatible with the generalized (oo-Markovian) shielding prop

erty: 

fo a.o = fooa.oo ' for m, n > 2, j integral . (3) 
m J n J 
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Extended generic equations for ^ ̂  [f^ ^ ] or the reflected 

quantity, with m > 2, couple to the extended set (2) and, together, they 

form a closed set. The main point for us is that these extended equations 

are compatible with the generalized (oo-Markovian) shielding property 

for m > 2 , j integral . (4) 

However, since f^^^^ fVj° ^°m*j+2 

these quantities can alternatively (and consistently) be determined 

directly from f_ , _ and physical quantities. 

Equating the r.h.s. of the generic ^ ^ „ and ^ [f, , 
m J n mj j mj 

and f^^ ] equations, for j=l, with those of the f^ , f^ and f^^^ 
j m n m 

[ f „  ,  and f „ , ]  equat ions,  respect ive ly ,  y ie lds 
O^d Oa m 

^ 'VoVi^  ° 'Vp. i  •  

Thus, using (3), we obtain from (5a) 

a_o - & ̂ 0 * for m + n > 3; m, n > 1 . (6) 
°m^°n ^ °m+n 
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Compatibility of (5a) and (5b) follows from the observation that 

f = f +f = f + f = f _ fi _ f 

for m > 2 . (7) 

Me naturally continue to compare expressions for d/dt f [d/dt 
°m*0°n 

fq a 0^ ^0 ) [d/dt (-r fg )] which, using (5a)[(8a)] and 
m 0 ^ m+n ^ aH-l 

(3), implies that 

Consequently, one also has 

f = f + f = f +f 
°m^-l °m®0 

= (1 - " (1 " ;)fo ] , for m > 2 . (9) 
^ m ^ m+1 

Repeating this procedure in the obvious way, and defining f° = q"*"^ f^^, 

for all yields 
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f _ (2p-2)(2p-l)(2p)»«»(2p-Hc-3) 

for m, n > 2 , j > 0 . (10) 

Rather complicated expressions also follow for f , for m > 2, j > 2, 
Om*-j 

which can, however, readily be shown to contain the factor (1 - i)(l -

e.g., 

\a_2 " " p)(l - + (l+^)f° - (1 - i)f^^] , 

for m>2. (11) 

Substituting (7, 9, 11, •••) for m=2 into (1) and integrating, using 

initial conditions from the density expansion (5.5a), determines f, = f^ 

(consistently), fg, f .... One can easily check that fg = 1 - (1 - •^) 

fflo* Since d/dt f_j c(2p-l)(p-l), for j > 1, clearly such f_j are constant 

when p = 1 ("almost random" filling), or 1/2 (where : kg =1 : 1/2 

: 0 forms an arithmetic progression, and the distribution is 

o-Markovian(^)). 
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ABSTRACT 

For random walks on finite lattices with multiple (completely 

adsorbing) traps, one is interested in the mean walk length until trapping, 

and in the probability of capture for the various traps (either for a walk 

with a specific starting site, or for an average over all nontrap sites). 

We develop the formulation of Montroll to enable determination of the 

large-lattice-size asymptotic behavior of these quantities. (Only the case 

of a single trap has been analyzed in detail previously.) Explicit results 

are given for the case of symmetric nearest-neighbor random walks on 2D 

square and triangular lattices. Procedures for exact calculation of walk 

lengths on a finite lattice with a single trap are extended to the multiple 

trap case to determine all the above quantities. We examine convergence to 

asymptotic behavior as the lattice size increases. Connection with 

Witten-Sander irreversible particle-cluster aggregation is made by noting 

that this process corresponds to designating all sites adjacent to the 

cluster as traps. Thus, capture probabilities for different traps 

determine the proportions of the various shaped clusters formed. 

(Reciprocals of) associated average walk lengths relate to rates for 

various irreversible aggregation processes involving a gas of walkers and 

clusters. Results are also presented for some of these quantities. 
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I. INTRODUCTION 

Extensive results are available characterizing random walks on a 

finite lattice of N sites (with periodic boundary conditions) having a 

single (completely adsorbing) trap, The basic quantities of 

interest are the mean number of steps until trapping, <n>^, for walks 

starting from various lattice sites i * (tne trap position). These, of 

course, have a natural interpretation as first passage times on a 

corresponding perfect lattice. The characteristics of the lattice-averaged 

walk length, <n> = (N-l)-i % <n> , are of particular interest. 

For sites, 4^, adjacent to ij, one has that <n>^* = N-1 for walks with 

jimps to neighboring sites only, independent of lattice structure^^^. For 

general t = («.jjij»***) o" a hypercubic lattice, where all sites except 

= (0,0,...) have identical jump rates p(m) [for a jimp of (m^.mj,»..) 

lattice vectors], we define = % m^ p(m) and i£i = (% 1^/0^)1/2. Then 

one has that 

<n>4 ~ 0(1))N , in 2D , (1.1a) 

~ (u + 0(i£i^"^))N , in d>3D , (1.1b) 

for large iii{«N), where u"i (= 0.340537... for a simple cubic lattice) is 

the probability of escape (i.e., nonreturn) for a walker starting at the 

origin on an infinite, perfect lattice. From (1.1), it is also clear 
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that(3) 

<n> ~ -55^ in 2D , ~ uN in d>3D , (1.2) 

where we have used that An iti ~ in NI/2 for most contributions in 2D. If 

denotes the mean number of distinct sites visited by an n-step walk on 

an infinite perfect lattice, then one can show that (1.2) implies^^*) 

~ N. This result, if also true for the corresponding finite lattice S^, 

has the interpretation that the walker, on average, visits all distinct 

nontrapping sites once before being trapped.Another perspective on 

the behavior of <n> follows from assuming that the (average) probability 

for trapping on the n^*^ step is (1 - 1/N) 1/N, so that <n> ~ I n (1 -
n=l 

1/N) 1/N (which has been shown to agree with (1.2) in d>3D)^^^. 

Efficient algorithms, exploiting lattice symmetry, have been developed 

to calculate <n>^ (and thus <n>) directly and exactly for finite lattices 

(results for N ~ lOP are readily obtained)Such results for <n> 

have been compared with those obtained from the first few terms of large N 

asymptotic expansions whose first terms are given by (1.2). There is close 

agreement even for small lattice sizes. These techniques can be readily 

adapted to model modifications such as biased walks, and alternative 

boundary conditions. 

Montroll has extended the above formulation to characterize a random 

walk in the presence of multiple (completely adsorbing) traps, denoted here 

by L = {2^,%^,...for t traps^^^^. Again the site-specific walk 
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lengths until trapping, <n>^, for A ^ L, and the average walk length, <n> 

= (N-t)-i y <n> , are of particular interest. As the appropriate 
ML * 

expressions for these quantities are rather complicated, little specific 

analysis has been given. The above discussion suggests that here, provided 

all trap separations are 0(1), (1.2) should still hold in 2D. Consequently 

the influence of multiple traps (as compared with a single trap) will only 

be seen in the coefficient of the 0(N) correction term. However for d>3D, 

zim<n>/N should be lowered from u by the presence of multiple traps. This 
Nx» 

behavior will be confirmed below. The above single trap procedures for 

direct calculation of <n>^ can be extended to the multiple-trap case, but 

ease of calculation is greatly enhanced by the presence of trap-lattice 

symmetries. The concept of lattice decimationwherein successively 

larger regions of the lattice are replaced by traps, also provides some 

systematic simplifying features. For the multiple-trap case, trapping or 

capture probabilities for individual traps are nontrivial for walks 

starting from a specific site. (The trap-specific mean walk lengths are 

also nontrivial.) One can have traps of distinct symmetry for t>3, and, in 

this case, lattice averaged trapping probabilities become nontrivial and 

lattice averaged trap-specific walk lengths vary from <n>. Finally we note 

that there has been some analysis of the case of a periodic array of traps 

(on a periodic lattice)^^^^. 

This multiple-trap problem has obvious application to the description 

of particle-cluster aggregration where a single randomly walking particle, 

upon reaching a site adjacent to the immobile cluster, sticks (or 

coalesces) irreversibly (cf. the Witten-Sander model for the diffusion 
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limited aggregation of fractal-like clusters^^^^). Here sites adjacent to 

the cluster are assigned as (completely adsorbing) traps, i.e., one 

decimates sites adjacent to the appropriate cluster shaped set of (trap) 

sites (see Fig. 1). We note that the cluster shape distribution in the 

Witten-Sander model is determined by the characteristics of an appropriate 

set of N*" trapping probabilities.Calculation of site-specific walk 

lengths allows determination of the average over all sites external to the 

decimated cluster. (Reciprocals of) such average walk lengths relate to 

rates of destruction of immobile clusters, with a specific shape, by 

irreversible aggregation with walkers in a gas of random walkers and 

immobile clusters. Determination of shape-specific cluster creation rates 

requires more detailed knowledge of trap-specific capture probabilities. 

Before outlining this contribution, we describe briefly work on other 

aspects of, and models for, multiple-trap problems. One can consider the 

effect of traps on the probability of return to the origin (for finite or 

infinite lattice). Problems involving a random distribution of traps 

naturally arise in modeling exciton transport in photosynthetic processes. 

Processes where "regular" sites have a nonzero trapping probability were 

also considered here. There is a large body of work directed at analyzing 

transport/diffusion characteristics of walks on imperfect lattices^^*). 

In Section II, we first review Montroll's generating function formu

la t ion  fo r  wa lks  on  a  f i n i te  la t t i ce  w i th  mu l t ip le  t rapsExpress ions  

for trapping probabilities are introduced, and these together with 

Montroll's expressions for walk lengths are expressed in a simplified, more 

convenient form. Explicit expressions are given in cases of just a few 
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Figure 1: Aggregation with a bent trimer; adjacent sites which have 
been decimated to traps are denoted by T 
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traps. For lattice averaged walk lengths, we give some indication of 

behavior for large connected compact clusters of traps. Explicit large N 

asymptotic results are given in Section III for symmetric, nearest-neighbor 

random walks on a square lattice. There is also some discussion of the 

corresponding triangular lattice problem. In Section IV, we show how 

matrix techniques for exact calculation of walk lengths, on finite lattices 

with a single trap, extend simply to the multiple-trap case and can also be 

used to calculate trapping probabilities. The relationship of the matrix 

structure and (reduced) walk lengths for a decimated problem to those of 

the original problem is elucidated. Extensive numerical results are given 

for the case of a square lattice. Finally some concluding remarks are made 

in Section V, and application of these results to particle-cluster aggrega

tion models is indicated. 



www.manaraa.com

264 

II. GENERATING FUNCTION FORMULATION AND ANALYSIS 

OF THE MULTIPLE-TRAP PROBLEM 

The development presented here is based on that of MontrollThe 

set of t traps is denoted by L = . The most basic quantity 

for this process is the probability, P„(i)» that the walker is at site £ 

after n steps, given that it started at jt", so PQ(ji) = 5^ The 

corresponding generating function is given by P(i) = % z" P (%). Since 
n=0 

clearly I P (i) = 1, for all n, one has that I P(i) = (1 - z)-i. 
I I 

The probability of trapping (or capture) at is trivially 

P^(z^ ) = Jtim Since one has 
n*«» 

(l-Z) P(l') 5 I z"[P„U')-P„.l(ib] E P.(t ')+(1-Z) ? z"[P„(tb-P.(£')], 
n—1 n—1 

(2.1) 

it follows that 

P.(i^) = iim (1-2) P(&i) . (2.2) 
z+1 

Since the probability of trapping at on the step is Pn(l^)-Pn_i(&^)* 

we conclude that the mean walk length, from 2° to is given by 
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<n> , . f. (2.3, 

!,[?„(»')-p„.iU')] ' 
n=l 

It is now clear that the mean walk length from for capture at any trap 

,,(11) 

= |j{(l-z)[P(tl) + PUM + ... * PU')]}̂ .! . (2.4) 

Montroll has provided expressions for P(&) in terms of the generating 

function, G(i), for random walks (starting at the origin) on a 

corresponding perfect lattice, as^^^^ 

PU) = GU-iO) + I [(1-z) GU-t"^) + 6 k] P(gk) . (2.5) 
k=l *** 

A simultaneous set of equations is provided by (2.5) for the P(z ). 

Solving these by Cramer's rule yields^^^^ 

P(ak)  ~ (1-z) 
-1 

Gil — k-1 Gio "^1 k+1 ... G^^ 

Gzi ^2 k-1 ®20 ®2 k+1 ^2t 
S31 k-1 S30 k+1 Gat 

II 

-

G. . ,  and  i , j  in det{G..} run from 

/ det{G.j} , 

(2 .6)  
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Equation (2.6) allows calculation of various quantities for a walker 

starting at a specific site, 1°. Corresponding averages over *0 ^ L can 

be obtained in terms of 

I'C") =T& J/C") • (2-7) 

Si":: A ®30 = ®jO " «jk- { «jO = l l, = 

-1 
(1-z) , we conclude that 

(l-z)?(i'') = -^ + (N-t)(l-z) 
Gil ••• k_l 1 h k+1 

*^1 ®2 k-1 ^ ®2 k+1 

'It 

'2t 

/ det {Q..}. (2.8) 

To reduce these expressions further, it is necessary to analyze in 

more detail the generating function, G(z), for random walks on a perfect 

lattice. For a finite periodic d-dimensional lattice where N=L^, one has 

that 

1 d L-1 
G(i) = -T [ n I ) exp(2iri£.k/L)/[l-zx(2irk/L)] , 

r j=l kj=0 
(2.9) 

where x(e) = % p(&) exp(i&.8), so 
I  

G(&)  -  +  $(& 'Z)  »  (2.10) 
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and #(&,!) is finite. Previous detailed analysis has shown that ( 2 )  

1 / 2  
*(0,z) ~ {Cj in N + Cg + C3N-1 + •••} + O(l-z) , in 2D , (2.11a) 

where = (EbeiOg)-! for a square lattice, and the first few c- have been 

calculated for various 2D lattices. One can also deduce from previous work 

that 

$(0,z) ~ {u + CgN"^/^ + ...} + O(l-z) , in d>3D . (2.11b) 

Given these results, we naturally make the decomposition $(i,z) = $(0,z) + 

e (& ,z ) ,  and  express  quant i t i es  o f  in te res t  i n  te rms o f  $ (0 ,z )  and  e^ j  =  

e(A^-£'^,z) as z+l. 

The first step is to exhibit explicitly, through G(0) factors, any z+1 

singular behavior in the determinants appearing in (2.6) and (2.8). We 

thus note that 

^11 
®21 

k-1 - ®1 k+1 

^2 k-1 1 ®2 k+1 

'11  * * *  ®1 k -1  -  ®1 k+1  

'21 ®2 k-1 ^ ®2 k+1 (non-singular), 

(2.12a) 
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"il 
®21 

"=1 k-1 ®io k+1 

^2 k-1 ^0 ®2 k+1 

= G(0) 
®ii-®io 

®21-®20 

• * *  ®1 k - l~® i0  1  «1  k+ l "® i0  

®2 k-l"®20 1 ®2 k+l'®20 

and 

det{G.j.} 

-11 

'-21 

=1 k -1  ® io  ® l  k+1  

®2 k-1 ®20 ®2 k+1 

= G(OK 1 e 
•12 

22 

It 

'•2t 

-22 

4l 

n t-1 1 

t-1 1 detfsij} 

®11 ^ ®13 
«21 ^ «23 

g 
It 

= 2t 

2.12b) 

(2.13) 

Note that the synmetric sum over determinants (2.12a), or over those 

constituting the coefficient of G(0) in (2.12) equals 

^ «i2-«ii " 

1 622-621 " 

«lt-«ii 

«2t"«21 

-«12 1 «13"«12 «It-«12 
-«22 ^ «23-«22 «2t"«22 
« « 

1 1 

= • • •  (=  S^ ,  say) .  (2.14) 
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It now follows that 

pjn = ®2l'®20 

^ ®i k+l"®io 

®2 k-l"®20 ^ ®2 k+l"®20 /S+ (2.15) 

«Kt") =T& 
11 ®1 k-1 ^ ®1 k+1 

"21 ®2 k-1 ^ ®2 k+1 "ITf (2.16) 

where the e-^ are now evaluated at z=l. Thus one has for a single trap 

(t=l) trivially P (fi) = P (&!) = 1, for a pair of traps (t=2) 

P,UM = . p U2) = , (2.17) 
"12 ^®12 

SO P^(l^) = P^(i2) = 1/2 (as must be the case since both traps are 

equivalent), and for a triple of traps (t=3) 

S3*P„(i^) = 623(612+513-223) + ®23^®20'^30"'^10^ ^®12"®13^ ^®30"®20^ » 

(2.18) 

1 2 
Ss'P.fll) =623(^12+613-623) +1^:^623 («=12+^13-2^23) + (eig-Cls) ] ' 

(2.19) 
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><here S3 = 2(612623 + ejjEgg + 612=13) " ®il " ®il " Sg#' 

corresponding expressions for traps and are obtained by permutation 

of indices. For the special case of a connected triple of traps where 

and t2, t2 and i3 are adjacent, so Sjg = Sgs = (= -1, as shown below), 

and ei3 = -1 - p, one has that 

: P.(*2) = 1 +p/(N-3) : (1-p) - 2p/(N-3) . (2.20) 

Note that it is possible for and to also be adjacent (p=0) on a 

triangular lattice wherein (2.20) shows that the P^(A^) are equal (as 

required). 

For a multiple-trap problan where all sites within hopping range of a 

particular trap, , are also traps, it is clear that the walker can 

never reach and thus P^(2|^°^) = = 0. Such a condition 

obviously implies complicated relationships between the for associated 

geometrical configurations. In the next section we consider one such 

simple example. 

Let us now consider the mean walk length, <n>^Q, from a specific 

starting site i®, and the average walk length <n> = (N-t)-i T <n> g. 
* 

From (2.4), (2.6) and (2.12-14), one has that 
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<n>^o = ^ 
3Z 

«11 «1 k-1 ®io «1 k+1 *** 

G(0).S + 1 
^ k=l 

«21 ®2 k-1 ®20 «2 k+1 

GlO).St + det{e.j} 

= - N 

«11 «1 k-1 «10 «1 k+1 

«21 «2 k-1 «20 «2 k+1 - det{e^j} 

where the e^j are evaluated at z=l. Thus for a single trap (t=l), one has 

that <n> 

¥ 
iO - -e 10 N, and for a pair of traps (t=2), <n> iO 

«12~«10"«20 )N. The result for t=l is particularly elucidating in 

providing a direct physical interpretation for the e-- at z=l. This result 
( 2 )  

also follows trivially from previous first passage time analyses^ ' which 

further lead us to conclude that, for nearest-neighbor sites, s^j = = 

-1, and that e,-,- ~ fpy. ^ 20 square lattice, ~ -u in d>3D, for 
ij ^(^2^2 

:i-ji large (cf. (1.1)). 

From (2.4), (2.8) and (2.13-14), one has that 

, V _ 1 3 f 
~ N = t d z  U ( Û ) . S ^ + d e t { e . . } i  

= ( N$(0,1) + N det{e^-j}/S^) , (2.22) 

where the e^j are evaluated at z=l. For a single trap (t=l), (2.22) 
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M 
reduces to <n> = i.e., only the first term contributes (cf. 

Refs. (3,9)), so the second provides the correction associated with the 

introduction of additional traps (and thus will be negative). For a pair 

of traps (t=2), (2.22) becomes <n> = •j^^»(0,l) + 1/2 and for a 

triple (t=3), <n> = -R^N#(0,1) + 2ei2C 13623»*hich Zeigeigega/Sg 

reduces to - 1/2(1 +e/4)~i for a connected triple where = e for the 

(possibly) nonadjacent pair of traps. We can also deduce from (2.22) that 

in 2D, <n> - Cj N tn N, as in the single trap case, and that corrections 

effect the 0(N) term, and that in d>3D, <n> ~ [u + det{e.j}/S^]N, so 

corrections affect the dominant large-N behavior. 

It is appropriate to note, at this point, that characterization and 

enuneration of the e.^-product terms in such determinant quantities as 

det{eij-} and is quite easily achieved using ideas from flow graph 

theory ,  and  spec i f i ca l l y  the  Coates  g raph^^^^  (see  Append ix  A ) .  

We are particularly interested in characterizing the behavior of the 

correction term to the average walk length, det{e,-,-}/S^., for a large number IJ L 

of traps (particularly when these form a connected cluster). To illustrate 

this behavior in 2D, consider the case of a symmetric nearest-neighbor 

random walk on a square lattice, where = 2-1/2. First consider a 

linear string of m (roughly) equally spaced traps of total span t (see Fig. 

2). we let t become large while holding m>2 fixed, so the separation 

between adjacent traps is ~ t/m. Thus one has Z h  &n( | i - j |  t /m) ,  

assuming that the traps are labeled from left to right 1, 2, 3, , and so 

to leading order, for large t, and m fixed, the e^j—2/? tn t are 
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< t > 

HI m 0 dî [T) 
»t/m * 

f m E! El St r r 
StW 

0 0 0^ 

" 0 0 0 
« » 

Figure 2: A linear string (square array) of m roughly equally spaced 
traps of total linear span t (t ' ) 
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equal. It is then a simple matter to show that^^®^ tlet{e^j} ~ 

(-1)"' ^(m-l)(- — An t)"* and Si. {-!)'" ^m(- — zn t)"" so <n> ~ N $(0,1) -
IT t TT 

N t, for large t. For ag^ m, this result clearly provides an 

upper bound on the large t behavior of the average walk length for a string 

of t contiguous traps. In fact calculations following indicate that for a 

linear string of t contiguous traps (t-lin), one has 

<n>t_iin ~ N $(0,1) - I N Jtn t . (2.23) 

For comparison, one naturally considers <n> for a square array of m 

traps of total horizontal/vertical span ti/2 (see Fig. 2). Similar 

2 1 arguments to those above show that ^ &n ti/2 = - ̂  &n t, and <n> ~ 

N$(0,1) - N tn t, for t large and m fixed. This leads to the 

speculation that for a contiguous square array of t traps (t-sq), <n>^_gq ~ 

N$(0,1) - i N in t, and, more generally, that for a general contiguous 

compact array of t traps 

<n> ~ N$(0,1) - — N in Perim , (2.24) 

for large t, where Perim is a suitably defined perimeter function. 

Validity of these relationships is investigated in the next section. 

The expressions for trap-specific walk lengths are, in general, more 

complex. Of course for a single trap (t=l), these are given by (2.21) and 

(2.22) with t=l. For a pair of traps (t=2), one has 
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n , ^ 3 f^S(0)(-ej2-e2o+eio) ~ ®12®20 ^ 
P.U') <n>40^ti =32 I 6(0)(-Èei2) - Hi Jz-1 

= h ̂ ^ \ i2  i  » (2 .25)  

and P^(i2) follows from interchanging 1 and 2 on the r.h.s. of 

(2.25). One can straightforwardly show that at 2=1 is bounded with 

respect to N in d>3D, but not in 2D. The average walk length to trap i 

[given by ^ (1-z) P(t^) 2=i/P.(&^)] for t=2 becomes 

1 a r(1-z)"^("^12) 1 
¥?iT\,iS(6)(-2ei;)-i:i^ Jz'l ' f""" both required, since 

£1 and are equivalent). Corresponding expressions for t>3 can be easily 

obtained, but are rather complicated. 
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III. LARGE-N ASYMPTOTIC RESULTS FOR SYMMETRIC NEAREST-NEIGHBOR 

RANDOM WALKS ON A SQUARE LATTICE 

As demonstrated in the previous section, the quantities of interest 

here can be obtained from the behavior of #(0,z) and the e^j, as z+1. For 

symmetric nearest-neighbor random walks on a square lattice, these are 

determined from the appropriate structure function, xfGi.Gg) " g^cos 0j + 

cos 02). From Montroll's analysis^^^, we have that 

$(0,1) = - An N + 0.195056 - 0.1170 N'l - 0.051 N-2 + 0(N-3) . (3.1) 

Our primary task is thus to determine, for z=l (assumed implicitly below), 

the e^j = e(r,s), say, where r(s) denotes the horizontal (vertical) 

separation in lattice vectors between the sites i and j. Clearly we have 

that e(r,s) = e(s,r), the e(±r,±s) are equal, and we already know that 

e ( l ,0 )  =  -1 ,  and  tha t  e ( r ,s )  ~  -  -  &n ( r ^+s^ ) ,  fo r  la rge  rZ  +  sZ .  

Here we are content to determine the e(r,s) to leading order in N = 

L2, as illustrated by the (Euler-McLauren formula based) decomposition 

L-1 exp[2iri(rk,+sk-)l-1 
:(r.s) = 1-2 I — = e,(r,s) + 0(N-l/2) . 

* 1- cos(-pi-) + cos(-^)] 

o , , l-cos(r0,)cos(s02) 
W H E R E C O ( R . S )  = - P - ; ( , D E , .  ( 3 . 3 )  
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It is obvious that e^Cl.O) + 65(0,!) = " ̂  /Q /Q ^®2 * ^ ^ so Sq(1,0) 

= 65(0,1) = -1, as required. All of the eQ(r,s) can be evaluated exactly 

as demonstrated below^^^^. 

One can easily show that 

o _ l-cos(re, ) 
eo( r ,0 )  =  -  ;  /Q dGi  

( l-C0S8i) l /2 (3-COS81) l/2 

= d, ''I'-l-l''" , (3.4) 
' (1+X)1/2(3.X)1/2 

where F^{x) = (l-T^j^(x))/(l-x) is an r^^-order polynomial (T^ denotes the 

first kind of Tschebysheff polynomial of order r). A recursive formula 

relating / dx x"/(a+bx+cx2)i/2 for different n, allows exact evaluation of 

(3.4). Note that making the transformation * = re^ in the first expression 

for eo(r,0), and expanding (1-cos = 2-1/2 ^(1+0(^)2) shows that 

eQ(r,0) ~ -2 in r /ir, as r-n» (as required). To evaluate 

9 cos(re,)[cos(s0, ) - l ]  
«C,(r,s) = Co(r.s) - s,(r.O) = jr/J /J de^ ;.cos8i - cose,— '^'S) 

(which is clearly bounded as r-x», for fixed s), we start by rewriting 

COS (S92) -1  =  H j (cos0 j ,  cos02) (2 -cose j -cos02)  +  H2(COS0 j ) .  For  | s |< | r | ,  

only the Hg term contributes to (3.5) which can be rewritten as a single 

integral of the form 
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1 +1 T |y | (x )  
*eo(r,s) = - - dx (i+x)ï/2(3_x)i/2 |s|<|r| » (3.6) 

where Gj(x) = 1, Ggfx) = 6-2x, Gg(x) = 25-20x44x2, ... Clearly (3.6) can 

be evaluated exactly. 

In Table I, we have presented transcendental forms for several eQ(r,s) 

and, in Table II, a more extensive set of numerical values which should be 

compared with the asymptotic behavior - ̂  &n(r2+s2). Note the monotonie 

increase in magnitude of with eg(r,s) with increasing r2+s2, as must be the 

case given their relationship to site-specific walk lengths for a single 

trap (here <n>^o = eo(r,s)N, as l\k», where = (r,s)). 

In Fig. 3 we have shown, for various starting sites, the values of 

the probability, ), that the walker is captured by the end trap in 

a pair, and linear triple of traps. Clearly as the starting site becomes 

far removed from the cluster of traps, these site-specific probabilities 

converge to the lattice average trapping probability, P^(zi). This follows 

from (2.15), (2.16) and the logarithmic behavior of the for large 

li-ji. To illustrate the latter quantities, we consider the cases of 

linear [bent] connected triples of traps where the central one 

is and use (2.19) to show that as N+®, 

P,(&1,3) = g - 0.3927 [^(1 - ^)'^ - 0.3667] , 

P,(t2) = 1 - I - 0.2146 [(2 - i)(l - • 0.2665] (3 .7 )  
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Table I: Transcendental forms for e^Cr.s) for random walks on a 20 

square lattice 

\ 1 2 3 4 

0 -1 i| - 17 

1 _ 4 
* 1 - 1  49 . M 

CM 

1 - 1  
16 

- 3* - &  - tS 
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Table II: Numerical values for egCr.s) for random walks on a 2D square 

lattice 

0 1 2 3 

0 0.000000 -1.000000 -1.453521 -1.721125 

1 -1.000000 -1.273240 -1.546479 -1.761503 

2 -1.453521 -1.546479 -1.697653 -1.848826 

3 -1.721125 -1.761503 -1.848826 -1.952301 

4 -1.907975 -1.929582 -1.983849 -2.055775 

5 -2.051609 -2.065000 -2.101213 -2.152758 

6 -2.168462 -2.177598 -2.203243 -2.241436 

7 -2.267041 -2.273688 -2.292725 -2.321919 

8 -2.352328 -2.357386 -2.372051 -2.394983 

9 -2.427497 -2.431478 -2.443111 -2.461548 

10 -2.494702 -2.497919 -2.507367 -2.522487 

11 -2.555475 -2.558128 -2.565952 -2.578561 

12 -2.610940 -2.613167 -2.619750 -2.630419 

13 -2.661953 -2.663848 -2.669464 -2.678603 

14 -2.709176 -2J10809 -2.715655 -2.723568 

15 -2.753134 -2.754555 -2.758780 -2.765696 

16 -2.794249 -2.795498 -2.799213 -2.805309 

17 -2.832867 -2.833975 -2.837265 -2.842679 

18 -2.869267 -2.870271 -2.873193 -2.878041 

19 -2.903660 -2.904648 -2.907196 -2.911610 



www.manaraa.com

281 

0.552 0.552 0.544 0.520 0.480 0.456 0.448 0.448 

0.568 0.576 0.576 0.546 0.454 0.424 0.424 0.432 

0.584 0.608 0.637 0.637 0.363 0.363 0.392 0.416 

0.593 0.634 0.727 4  4  0.273 0.366 0.407 

0.463 0.464 0.455 0.427 0.377 0.340 0.324 0.322 0.325 

0.483 0.494 0.497 0.465 0.356 0.297 0.289 0.297 0.309 

0.504 0.534 0.572 0.581 0.285 0.205 0.236 0.270 0.295 

0.515 0.565 0.677 4  4  4  0.181 0.151 0.288 

Figure 3: Infinite lattice trapping probabilities for the leftmost 
trap, ip in a pair, and linear triple of traps 
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In Table III we have presented trapping probabilities for all members of 

linear strings of traps of length m, (so t=m) for l<m<20. 

It is also interesting to consider trapping probabilities for 

decimated linear strings of traps. Here the results can be interpreted in 

the context of particle-cluster aggregation as describing what proportion 

of the linear and various branched clusters are formed by aggregation with 

a linear cluster. For example, for aggregation with a dimer (adjacent 

pair), as N+«», 42.73% (57.27%) of the trimers formed are linear (bent). A 

more extensive set of results for aggregation with m-mers (so t=3nH-2), for 

l<m<16, is shown in Table IV. 

It is obvious, particularly in the context of the above example, that 

a trap for which all nearest neighbors are also traps cannot be reached by 

the walker, and thus has zero trapping probability (see the remarks in 

Section II). Obviously this is true for the simpler N+<»> form of trapping 

probabilities, and reflects rather complicated relationships between the 

eo(r,s). The simplest example is a decimated single trap, (m=l above), 

where one has that 

1 e(l,0) s (1,0) e(l,0) e(l,0) 
1 0 €(1,1) e(2,0) e(l,l) 
1 e(l,l) 0 e(l,l) s (2,0) 
1 e(2,0) G (1,1) 0 e(l,l) 
1 e(l,l) e(2,0) e(l,l) 0 

= e(2,0)2[e(2,0)2 - 4e(2,0)e(1,0) + 8e(l,l)s(1,0) -

4e(l,l)2] 

as N + » (3.8) 
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Table III: Random walks on a square lattice of N sites with a 

linear string of m traps, values of lattice 

averaged probabilités for capture In a trap on the 

left (or right) end, and 2nd, 3rd, 4th,... from that 

end, respectively 

R Trapping Probabilities 

1 1 000000 
3 O. 900000 
3 0 392699 0.214602 
4 0. 332474 0.167926 
S 0. 293202 0. 141012 0. 131971 
6 0. 269127 0 123834 O. 11I039 
7 0. 243802 0. 111640 0 09/694 0. 093810 
8 0. 236903 0. 102432 0. 088119 0.082946 
9 0. 2130H8 0.099169 0. 080904 0. 074912 0.072694 

10 0. soi920 0. 089299 0. 07S204 0. 068427 0.069993 
11 0. 191692 0.084318 0. 070997 O. 063618 0. 060243 0. 099224 
12 0. 183103 O. 080118 0. 066679 0. 099699 0.096013 0. 094396 
13 0. 179604 0. 076407 0. 063369 0.096416 0.052962 0. 090579 0. 049964 
14 0. 168997 0. 073308 0. 060909 0. 093624 0.049678 0 047469 0. 046460 
19 0. 163011 0.070494 0. 098004 0. 091208 0. 047221 0.044861 0. 043600 0.043301 
16 0. 197692 0.067981 0. 099787 0. 049091 0. 049099 0.042643 0.041209 0. 040543 
17 0. 193789 0 069719 0. 093809 0.047317 0 043232 0.040724 0.039173 0. 038320 0. 038048 
18 0. 148349 0 063668 0. 092020 0.049941 0.041982 0. 039043 0.037409 0. 036436 0 039963 
19 0 144279 0 061798 0. 090402 0.044033 0 040108 0.037993 0.039069 0 034787 0. 034189 0. 033991 
30 0. 140916 0.060089 0. 048926 0.042669 0.038780 0 036233 0. 034497 0 033391 0. 033647 0.032311 
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Table IV: Random walks on a square lattice of N sites which irreversibly 

aggregated with a linear cluster of m sites. N»» values of 

lattice averaged probabilities for sticking besides the left (or 

right) end site, for sticking above the left (or right) end 

site, and above those 2nd, 3rd, ... from that end, 

respectively 

m Trapping Probabilities 

1 0.250000 0.250000 

2 0.213656 0.143172 

3 0.190489 0.122353 0.064806 

4 0.173952 0.108973 0.054051 

S 0.161316 0.099422 0.047410 0.045021 

6 0.151218 0.092134 0.042814 0.039443 

7 0.142889 0.086318 0.039388 0.035588 0.034522 

8 0.135854 0.081528 0.036702 0.032719 0.031125 

9 0.129803 0.077486 0.034519 0.030472 0.028599 0.028046 

10 0.124521 0.074012 0.032697 0.028648 0.026524 0.025759 

11 0.119855 0.070983 0.031145 0.027127 0.025021 0.023971 0.023650 

12 0.115692 0.068309 0.029801 0.025832 0.023686 0.022522 0.022003 

13 0.111947 0.065924 0.028622 0.024712 0.022551 0.021316 0.020669 0.020466 

14 0.108552 0.063779 0.027577 0.023730 0.021568 0.020290 0.019558 0.019222 

15 0.105455 0.061837 0.026640 0.022860 0.020708 0.019403 0.018614 0.018186 0.018050 

16 0.102616 0.060065 0.025796 0.022081 0.019945 0.018626 0.017798 0.017306 0.017075 
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Reduction of this determinant to polynomial form (which was simplified by 

symmetries and Coates graph techniques) is unnecessary if one notes that, 

as Mx», all rows sum to -3, guaranteeing a vanishing N*» limit. 

Finally we consider site-specific walk lengths, <n>^g, and corre

sponding lattice averages, <n>, for various connected arrays of traps. Let 

(r,s) denote the position of . Then for a single trap at the origin 

(0,0), <n>20= -e^gN - |eQ(r,s)|N, as N*-, so the dominant behavior can 

be read off from Tables I and II. For an adjacent pair of traps at (0,0) 

and (0,1), one has <n>^o ~ 2(|eo(r,s)| + |eo(r-l,s)| - 1)N, as for 

which some values are shown in Fig. 4. For t traps, we have from (2.22) 

and (3.1) that 

<n> = $(0,1) - 6 N + 0(Ni/2)] 

= N in N + (0.195056 - 5)N + 0(Ni/2)] , (3.9) 

and here we shall provide 6 values for a range of trap configurations. 

For an adjacent pair of traps one has 5 = 1/2, and for a connected 

linear [bent] triple of traps 5 = ir/4 - 0.785398 [|(Tr - 1) ̂ » 0.733471]. 

In Table V, we have displayed 5 values for linear strings of m traps with 

l<m«20 (so t=m), and in Table VI, 5 values obtained from decimating a 

string of m traps (to produce 2m+2 extra traps, so t=3m+2) are displayed 

for l<m«15. In both cases we have also given values of 

[tn(t+a)-in(t-lt:)] for a few choices of o, in order to estimate A = £im A 
m»fl» 
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1.5040 1.4006 1.30516 1.13380 1.13380 

1.4163 1.2732 1.12207 1.00000 1.00000 

1.3455 1.1540 0.90986 0.63662 0.63662 

1.3145 1.0873 0.72676 T T 

Figure 4: The coefficient y in <n>^~YN, as hk», for random walks on a 
lattice with an adjacent pair of traps 
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10 
11 
12 
13 

14 

15 

16 
17 

18 
19 

20 

287 

Random walks on a square lattice of N sites with a linear 

string at m traps. Values of 5^ in <n> = [#(o,l) _ 

&mN+0(N^/^)], and of - in(t4*-l)](cf. 1 
= 0.636620) are shown * 

4n 
a = -1 

o
 

M o
 a = -0.287389 

0.000000 

0.500000 0.721348 0.570230 
0.785398 0.411742 0.703878 0.620575 

0.983258 0.487983 0.687773 0.630481 
1.134376 0.525295 0.677223 0.633601 

1.256553 0.547526 0.670118 0.634903 
1.359076 0.562320 0.665083 0.635558 

1.447386 0.572881 0.661343 0.635924 
1.524943 0.580815 0.658473 0.636158 

1.594079 0.586978 0.656185 0.636297 
1.656444 0.591920 0.654337 0.636400 

1.713246 0.595970 0.652811 0.636476 
1.765395 0.599335 0.651515 0.636519 

1.813596 0.602191 0.650416 0.636557 

1.858404 0.604631 0.649458 0.636576 

1.900267 0.606773 0.648651 0.636616 
1.939546 0.608613 0.647905 0.636613 

1.976543 0.610264 0.647271 0.636636 
2.011507 0.611703 0.646676 0.636626 

2.044650 0.612996 0.646147 0.636620 
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Table VI: Random walks on a square lattice of N sites after decimating 

a linear string of m traps (producing 2nn-2 extra traps, so t 

= 3rtH-2). Values of and (cf. Table V) are shown 

m p II ro
 An 

a » 2.5 a = 3 

1 1.000000 

2 1.175138 0.608790 0.696888 0.784867 

3 1.306508 0.588724 0.654655 0.720540 

4 1.412524 0.581478 0.634621 0.687743 

5 1.501803 0.579167 0.623889 0.668599 

6 1.579115 0.578980 0.617690 0.656393 

7 1.647402 0.579769 0.613950 0.648127 

8 1.708618 0.581015 0.611650 0.642282 

9 1.764132 0.582456 0.610233 0.638009 

10 1.814945 0.583981 0.609403 0.634824 

11 1.861809 0.585487 0.608931 0.632375 

12 1.905308 0.586968 0.608727 0.630485 

13 1.945902 0.588380 0.608684 0.628989 

14 1.983964 0.589756 0.608794 0.627831 

15 2.019797 0.591063 0.608985 0.626907 

16 2.053651 0.592284 0.609215 0.626146 
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(which is independent of o). This corresponds to fitting 6^ to the 

asjuptotic behavior 5^ ~ A in[B{nHtt)]. Note that Perim = 2{m+l) [2(m+3)] 

corresponds to the standard choice of perimeter function for the linear 

string [decimated linear string] of m traps. Our speculation that A = 2/* 

(see the previous section) is supported by the results for the linear 

string of traps, and not inconsistent with results for the decimated 

string. In the former case we have chosen an optimal o value, so Ago " 

2/ir, and checked that the A^ varies slowly from 2/w as m is reduced from 

20. For a decimated single trap (m=l,t=5), the result 5=1, obtained 

previously in Ref. 9, follows trivially from the observation^^) that the 

mean walk length for return to the origin on a perfect finite lattice is N 

(cf. (4.6)). For a general decimated linear string of traps, reduction in 

the average walk length with increasing string length, reflects the 

increase in the rate of destruction by irreversible aggregation with random 

walkers of corresponding immobile linear clusters (in the same 

walker/cluster gas environment). 

A limited set of results for the 20 triangular lattice, analogous to 

those discussed in this section, are presented in Appendix 8. 
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IV. EXACT ANALYSIS OF RANDOM WALKS ON FINITE LAHICES WITH MULTIPLE TRAPS 

Here we consider only symmetric nearest-neighbor random walks on a 

finite 20 square lattice (of N sites) with periodic boundary conditions, 

and one or more completely adsorbing traps. Extension to more complicated 

walks is straightforward. For the case of a single trap, there are 

extensive previous calculations for the site-specific mean walk length 

(providing the lattice-averaged walk length) until trapping. We start by 

demonstrating the straightforward extension to the case of multiple traps, 

L = {i^, ty}, where analysis is always based on the intuitively 

obvious set of equations 

<n>i = 1/4 I' (<n>m + 1] , 1 4 L . (4.1) 
m 

Here the sum is over sites adjacent to i, and we set <n> . = 0. The 

^T 

average walk length is again calculated from <n> = (N-t)-i Y <n> . 
4L ' 

We use the example of an adjacent pair of traps on a lattice of size N 

= L2, with L even, for illustration. Reflection symmetry about horizontal 

axes through the traps guarantees equivalence of various sites. 

Nonequivalent ones can be labeled as shown in Fig. 5 for L=14. (The reason 

why we did not choose a more conveniently shaped (L)x(L-l) lattice is 

because we want to compare with the asymptotic large N=L2 results of the 

previous section.) The equations (4.1) for this case, rewritten in matrix 

form, become 

"<n>' "i" 
= * <n>2 = 1 

: 1 
•
 •
 •
 

1 
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26 32 

149 49 50 51152 53 54 55 551 

26 32 37:41 44 46 48 • 

19 24 30:35 39 43 47 

13 17 22 28 34 40 45 

: 8 8 11 15:21 29 36 42 

: 4 4 6 10; 16 23 31 38 

: 1 1 3 7:12 18 25 33 331 

: T T 2 5i 9 14 20 27 27: 

1 3 /  • •  

Figure 5: Equivalent site labeling for one quadrant of an 14x14 square 
lattice with an adjacent pair of traps 
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where the "fundamental" matrix Ô satisfies Ô = I + à with (cf. Fig. 5) 

A. = 

1 
4 

1 
5 • 

1 
4 

0 -

0 

0 

1 
4 

1 
4 

1 
4 

2 
4 

1 
4 

0 -

0 

0 

0 0 

1 
4 

1 
4 

1 
4 

0 0 0 0 0 0 0 

J 0 0 0 0 0 0 

0 

0 

1 1 
4 - 4 

1 
4 

0 -

0 -

4 
1 
4 

0 -

(4.3) 

Solution of (4.2) is obtained by matrix inversion. If additional 

equivalent sets of sites in the above case are decimated (to create a 

multiple-trap problem preserving the symmetry of the two-trap problem), the 

corresponding matrices are obtained from & (or 4) by removing the rows and 

columns corresponding to the additional traps. For example g(m) = {(^J^j, 

for i,j>m} corresponds to decimating sites labeled 1, 2, •••, m-1 (so 8(1) 

= Ô). "Hie similarly defined 4(3) and 4(6) submatrices are indicated above 

in (4.3). 

Results from these calculations applied to determination of the 

average walk length, <n>, for various lattice sizes N=L2^ are presented for 

linear strings of m traps (so t=m) with l<m<9 in Table VII, for a bent 

triple of traps in Table VIII, and after decimating a linear string of m 

traps (where t = 3nH-2) with l<m<9 in Table IX. Values of 5 obtained from 
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Table VII: Random walks on an LxL square with a linear string of ra traps. 

Values of the average walk length, <n> (and 6^, where <n> = -j^ 

Cj N in N + (0.195056-«jjj)N] N=L^), for various L 

IB" 1 3 5 M* 7 m 9 

L <n> «1 <n> «3 <n> *5 <n> *7 <n> 

3 9.00000 0.005565 4.00000 0.598158 

S 31.6667 0.003656 14.0909 0.723656 10.0000 0.899656 

7 71.6154 0.032150 35.4367 0.754940 22.4861 1.021787 18.6667 1.107330 

9 130.604 0.001358 69.5359 0.767180 45.3801 1.068188 33.6910 1.213860 30.0000 1.264635 

11 209.937 0.000926 117.667 0.773263 79.6320 1.090683 58.7271 1.264333 47.6161 1.357352 

13 310.649 0.000668 180.867 0.776732 126.193 1.103341 94.4457 1.292251 75.0153 1.407714 

31 2290.61 0.000115 1539.83 0.783877 1209.66 1.129003 1000.« 1.347705 849.613 1.505388 

33 2638.78 0.000101 1787.56 0.784055 1412.78 1.129636 1174.91 1.349050 1002.86 1.507711 

35 3013.97 0.000089 2056.00 0.784204 1633.83 1.130163 1365.46 1.350169 1170.90 1.509643 

37 3416.45 0.000079 2345.46 0.784329 1873.11 1.130606 1572.43 1.351110 1354.04 1.511267 

39 3836.41 0.000070 2656.22 0.784435 2130.88 1.130983 1796.11 1.351909 1552.56 1.512644 

IB»2 m-4 ==8 

<n> «S <n> <n> u <n> 

4 11.0476 0.473433 6.66667 0.765098 

6 32-2790 0.488900 17.9257 0.893117 14.0000 1.011651 

8 67.7156 0.493878 39.9223 0.934070 27.7455 1.125989 24.0000 1.190745 

10 118.859 0.496112 73.8282 0.952176 51.6703 1.175227 40.3159 1.290021 

12 186.870 0.497309 120.740 0.961814 86.5650 1.200899 66.5156 1.340745 

3b 1678.41 0.499567 1247.96 0.979863 1007.90 1.247899 843.749 1.431160 

32 1951.25 0.499619 1460.95 0.980274 1187.07 1.248952 999.315 1.433143 

34 2246.93 0.499662 1692.92 0.980615 1383.03 1.249823 1170.14 1.434782 

36 2565.76 0.499696 1944.16 0.980900 1596.08 1.250552 1356.53 1.436154 

38 2908.04 0.499728 2214.98 0.981141 1826.52 1.251169 1558.77 1.437312 
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Table VIII: Random walks on an LxL square lattice 

with a bent triple of traps. <n> and 5 as 

in Table VII 

L <n> « 

3 3.27273 0.652030 

5 14.7107 0.701838 

7 37.4129 0.717080 

9 73.2098 0.723504 

11 123.434 0.726781 

13 189.136 0.728674 

15 271.184 0.729863 

17 370.318 0.730660 

19 487.184 0.731218 

21 522.354 0.731625 

25 949.614 0.732166 

27 1142.60 0.732351 
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Table IX: Random walks on an LxL square lattice after decimating a linear 

string of m traps (so t = 3nH-2). <n> and as in Table VII 

n i"l m»3 m»7 m«9 
L <n> «I <n> «3 <n> «5 <n> «7 <n> «9 

3 2.000000 0.795689 

S 9.20000 0.925256 4.79121 1.112333 
7 25.7622 0.961750 14.5592 1.203436 10.5918 1.292695 
9 53.2678 0.976819 32.8320 1.243564 22.8104 1.371346 19.1673 1.424412 

11 93.0383 0.984465 60.8790 1.264211 43.3107 1.413953 33.8708 1.494888 30.4489 1.53027 
13 146.129 0.988869 99.7446 1.276164 73.1172 1.438828 56.7396 1.537908 47,6819 1.59422 

33 1556.51 0.998265 1231.27 1.301777 1027.68 1.492046 879.327 1.630593 763.888 1.73822 
35 1795.84 0.998457 1429.13 1.302301 1199.17 1.493130 1031.21 1.632465 900.049 1.74112 
37 2054.46 0.998618 1643.82 1.302743 1385.93 1.494042 1197.17 1.634041 1049.36 1.74355 
39 2332.66 0.998756 1875.62 1.303118 1588.24 1.494818 1377.52 1.635380 1212.12 1.74562 

HP "2 OP •4 «•6 m*8 
<n> <n> <n> «S <n> «8 

4 3.00000 0.983848 

6 11.5145 1.086955 7.33583 1.211196 

8 28.8027 1.125083 18.3286 1.295132 14.5389 1.362690 
10 56.2993 1.142974 37.6889 1.336803 27.9939 1.436976 24.4716 1.479838 
12 95.1789 1.152752 66.5454 1.359804 49.6669 1.479992 40.4350 1.546898 

1  1268.86 1.171972 1034.38 1.405090 873.278 1.565258 751.489 1.686170 
34 1475.64 1.172332 1210.04 1.405938 1027.15 1.566843 888.439 1.688747 

36 1700.17 1.172635 1401.53 1.406649 1195.51 1.568171 1038.84 1.690904 
38 1942.73 1.172890 1609.15 1.407250 1373.65 1.569294 1203.98 1.693407 
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setting <n> equal to ̂  N in N + (0.195056 - 6)N are also listed, and their 

convergence to the N*» asymptotic values, given in Section III, should be 

noted. 

We now turn our attention to evaluation of site-specific trapping 

probabilities for a general set of t traps, L. If denotes the 

probability that a walker, starting at z, is trapped at i|, then one 

obviously has that 

pi = i Î' Pm . ML . (4.4) 
m 

Where j = 6^ y Equation (4.4) implies that ( J = 4 I' ( J p],) 

which, together with the imposed boundary conditions, is consistent with 

t ; 
the requirement that T P = 1, for all i. The lattice-averaged trap-

i=l * 

specific capture probabilities P^ are again calculated from P^ = 

(N-t)-i T pi. For the above example of an adjacent pair of traps, the p] 

are not invariant with respect to reflection in a vertical line through the 

traps, so the matrix A is not appropriate. A larger matrix accounting for 

the lower symmetry must be introduced. However full symmetry is preserved 

in the important case where sites labeled 1 and 2 (in Fig. 5) are also 

1 2 decimated and we consider only P^* . Here the appropriate matrix is 6(3), 

and one has that 
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ô(3) 

Pl "f 

1 

' I  

Pi 1 1 
, 0(3) . 

P$ 1 0 

Pl " 4 0 , 0(3) . 
Pi 

= 5 1 

p& 0 0 

.  •  .  .  • .  . •. 

(4.5) 

1 2 As mentioned previously, these and the corresponding lattice averages, 

give the proportion of bent to linear trimers formed by aggregation with a 

dimer (adjacent pair of filled sites). 

Another useful application of the P^ is in relating the walk lengths 

<n>^ to those corresponding to decimating all neighboring sites to the 

original set of traps L. We denote the enlarged set of t' traps by L', the 

corresponding walk lengths by <n>^, and the corresponding trapping 

probabilities by P^"", for m e L' and A 4 L'. Note that P^'" =0 for %L. 

It is clear that 

,m 

<n> P'"* <n> m (4.6) 

since, to reach L, the walker must first reach one of the sites, m, in L'-L 

(with probability P^""), and then the additional mean walk length from m to 

L is <n>jjj. Using (4.6) to calculate the average walk length, <n>' = 

(N-t')-i 
ML' 

<n>', for the decimated case, one obtains 

<n>' = t'-t 
. CP'" 

meL '-L 
<">m ' 

(4.7) 
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where P'"* = (N-t')-i ^ are the lattice-aver aged capture 

probabilities. That is, given the <n>^, we need only calculate the P'*" 

to determine <n>'. 

Returning to the example of an adjacent pair of traps, walk lengths 

for the case where neighboring sites 1 and 2 are decimated can be obtained 

from (4.6) as 

<n>l = <n>. - [Pl<n>i + P2.<n>2) 

= I [(A-I)ji - , for j>3 . (4.8) 

An alternative and more complete understanding of this result comes from 

the observation that (see Appendix C) 

[A(3)-I)ji = (ari)ji - Pj(A-i)ii - p;(4ri)2i , for i,j)3 , (4.9) 

and, thus, that the sum in (4.8) can be taken over i>3 only (rather than 

i>l). Equation (4.9) is characteristic of the general relationship between 

inverses of fundamental matrices for the original and decimated problems. 

Each row of the decimated inverse is obtained from the corresponding row of 

the original inverse after subtracting a trapping probability weighted 

average of rows (in the original inverse) corresponding to sites decimated 

to traps. This result generalizes the procedure given by Walsh and Kozak 

for some simple special cases^^®^. 
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Finally we consider the mean walk lengths, <n>^, for a walker starting 

at site I to be adsorbed at trap ty. Clearly one has that 

'l = ; Z' + 1) . ml , (4.10) 
m 

which can be solved for the <n>^ given knowledge of the from (4.4). 

Equation (4.10) implies that ( J = % %' [( I pj, <n>^) + 1] 
i —1 m i —1 

t i i 
consistent with the requirement that <n> = 7 P <n>, (cf. (4.1)). We 

* i=l * * 

can now also calculate trap-(i)-specific lattice average walk lengths 

<n>i = pi <n>i / , (4.11) 

^ i i which satisfy <n> = % P <n> , as required. 
i=l 

Finally we return to the exemple of a decimated pair of traps (where 

the decimated sites adjacent to the pair are denoted by 1 and 2 as in Fig. 

5). In Table X, we have given values for <n>i and <n>2 for a range of 

lattice sizes. These can be interpreted as lattice-averaged walk lengths 

for the formation of bent and linear trimers, respectively. 
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Table X: Random walks on an LxL square lattice 

after decimating an adjacent pair of traps 

(producing six additional traps, four on the 

sides and two on the ends). Values of the 

corresponding trap-specific average walk 

lengths are given for various L 

L <n> <n> 

side end 

4 3.00000 3.00000 

6 11.6082 11.3790 

8 28.8432 28.7467 

10 56.2841 56.3201 

12 95.1143 95.2663 

14 146.294 146.548 

16 210.632 210.976 

18 288.824 289.248 

20 381.481 381.978 

22 489.149 489.713 

24 612.322 612.947 

26 751.447 752.129 

28 906936 907.671 

30 1079.17 1079.96 



www.manaraa.com

301 

V. CONCLUSIONS 

We have shown that the formulation of Montroll can be developed to 

provide explicit results for the large lattice size (N) asymptotic behavior 

of trapping probabilities and walk lengths on a lattice with multiple 

traps. Procedures for exact calculation of these quantities on finite 

lattices (N < lO^) were developed. A simple characterization of the 

reduction of walk lengths for a decimated problem (as compared with the 

original) leads to an elucidation of the relationship of the matrix 

structure for the two problems. All of the finite square lattice results 

presented here are for LxL (square) rather than rectangular lattices. 

However, the techniques of analysis described here readily extend to the 

latter case and results for symmetric nearest-neighbor random walks for 

some corresponding 5 values (as defined by <n> = N £n N + 

(0.195056-5)N]) are shown in Fig. 6. 

These results for N»» trapping probabilities are particularly 

significant in the context of Witten-Sander particle-cluster 

aggregation,(^^^where it is clear that these determine the shape 

distribution of clusters formed. This applies in the standard case where 

the cluster nucleates around a single filled site as well as to 

generalizations, where a (nearby) pair, triple, ... of filled sites act as 

nucleation centers. 

For another application, we consider a process where a gas of random 

walkers irreversibly aggregate forming immobile clusters (a Brownian 

aggregation process). Mean-field-type kinetic equations for the cluster-
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Figure 6: Values of « in <n> = ̂  [— N &n N + (0.195056-5)N] are 
shown for random walks on various LxL' square lattices (of N 
= LxL' sites) with (a) a single trap, (b) a linear triple of 
traps aligned with the side of length L. When L + » with 
L-L' constant, 5 converges to the L = L' value. The 
deviation from this limit when, e.g., L • • with L' = 2L-1, 
is exactly accounted for by a change in c^ in (2.11a) 



www.manaraa.com

303 

size (and shape) distribution in this process are based on identification 

of appropriate rates for formation and destruction of clusters by 

aggregation with individual walkers (at the simplest level, ignoring the 

effect of a walker irreversibly linking two smaller clusters to form a 

larger one). Each of the former rates is naturally related to (the 

reciprocal of) the average walk length for a random walk on a suitable 

sized (Nt) lattice with an appropriate decimated cluster of traps. This 

time-dependent size, Nt, is naturally related to the reciprocal of the 

density, p^, of clusters of one or more atoms. To see this, one thinks 

of dividing the lattice into regions of size Nt » 1/pc about each such 

cluster, and considering the fate (i.e., the average walk length) of an 

additional "test" walker artificially confined to one such region. To 

assess the validity of this scheme for determining rates, we have performed 

direct simulations involving a single walker on a lattice with several 

immobile clusters [where destruction rates are taken as the capture 

probabilities divided by the average walk length (for capture anywhere)]. 

These indicate that a choice of equal-sized (Nt) regions, for all 

clusters overestimates (underestimates) destruction rates for larger (smal

ler) clusters, so a larger (smaller) region should be associated with 

larger (smaller) clusters. In fact, it appears that the sizes of these 

regions should be chosen so as to equalize average walk lengths, and then 

(for canparison with the walker-raultiple-cluster simulations) destruction 

rates are taken as the fraction of the total unoccupied area associated 

with regions surrounding clusters of the size and shape under 

consideration, divided by this equalized walk length. Corresponding 
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snape-specific creation rates involve an additional appropriate capture 

probability factor. The resulting kinetic equations do not have the 

standard Smoluchowski form^^^^ because of the complicated functional 

dependence of average walk lengths on N. Such equations will be 

investigated in later work. 

The analysis here can be extended to include the effect of attractive 

o r  r e p u l s i v e  i n t e r a c t i o n s  i n  p a r t i c l e - c l u s t e r  a g g r e g a t i o n b y  

introducing more traps surrounding the cluster or introducing trapping 

probabilities less than unity, respectively. A further natural extension 

involves calculation of (complete) walk-length distributions (rather than 

just the means). Its use in the analysis of simple single-cluster growth 

models has already been suggestedThese distributions could also be 

applied to the development of non-Markovian kinetic equations for Brownian 

aggregation. Finally we remark on the need for a more sophisticated 

analysis of the appropriate txt determinant structure for a large number of 

traps, t, in order to provide a more detailed understanding of the basic 

quantities of interest in this regime. For example, we would like 

quantitative estimates of the shielding effect by the arms of fractal 

clusters (from trapping close to the cluster nucleus). 
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APPENDIX A: DETERMINANTS VIA COATES GRAPHS 

Evaluation of det{g.j}, where l<i,j<t, can be achieved by first 

constructing a Coates flow graph, G, involving points 1, 2, •••, t where 

each nonzero g^j is represented by a directed bond from i to j, with 

"transmittance" g^j. If H is a subgraph of G, then *(H) denotes the 

product of transmittances, and c(H) the number of one way circuits. Then 

one has that^^*) 

det{g.j} = det G = (-1)^ J ,(H) 
HeS 

where S is the set of spanning subgraphs in which each (disconnected) 

component is a one way circuit. The simplest application of this result 

here is the determination of det{e..} where e- - = e-- and e-- = 0. Some 
IJ ' J 0 

examples are given in Fig. 7. Examples for the more complicated 

determination of 
^ ®12 ®13 
1 • • are shown in Fig. 8. Here summation 

over permutations of labels, leads to expressions for S^. 
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det [ 1<5>2] = - 1 

det A = 2 

det 
3 1' 

- 2  
4 

•;o o: • : 
'3 1 

+ 

,3 

'4 

3 

4 

Figure 7: Diagramatic representation of det {e^j} for t = 2,3,4,... . 
Each line on the r.h.s. represents a factor of Factors 
of 2 are associated with circuits of more than two points 
since the flow can have two directions (flow arrows can be 
dropped since e^j = e^.^) 
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Figure 8: Diagramatic representation of 
1 ^ly 

1 622 623* 

for t = 2,3,4,.. Each line on the r.h.s. represents a 
factor ofe^j. Dashed lines representing factors of unity 
transmittance are included for completeness only, and can be 
ignored 
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APPENDIX B: RANDOM WALKS ON A TRIANGULAR LATTICE WITH TRAPS 

It is convenient to shear the triangular lattice, as described by 

Montroll^^^, so that its sites superimpose those of a square lattice (see 

Fig. 9). Again we set e^j = egCr.s) + 0(N-i/2), where r(s) denotes the 

horizontal (vertical) separation, in lattice vectors, between sites i and 

j. Here we determine only the dominant N+« behavior, Go(r,s), of e(r,s) 

which is given in terms of the triangular lattice structure function 

xtei.Bg) = 3[cosej+cos82+cos(ej-e2)], as 

Sgfr.s) dGg [cos(rei)cos(se2) 

-sin(r9j)sin(s02)-l]/[l-x(9i,02)]. 

It is a straightforward matter to show that^^^^ 

, l-cos(r8,) 
eo(r,0) = - fl, 

(1-COS0i)l/2(7-COS0i)l/2 

.. 3 dx — . 
' (l+x)l/2(7-x)l/2 

where = (1 - Tp+^)/(l-x), as previously. Clearly eQ(r,0) — ̂ an r 

from analogous arguments to those given in Section III. A more complicated 

analysis shows that^^^^ 

- . . 2+K (cos0,)(3-cos0,) 
eo(r,l) = TRT d0iKp(cos0i) - -57 /_, d0j 

(1-COS0J(7-COS8j 
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Figure 9: Shearing of a triangular lattice so that its sites are 
superimposed on those of a square lattice 
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where K^{cose) = - cos(r8) = sgn r (1-x) U|^|_j(x) - T|^|(x), 

with x=cos8, sgn r = -1, 0, 1 for r < 0, = 0, > 0 respectively, and 

denoting the r^*^-order Tschebysheff polynomial of the second kind. The 

second integral can be reexpressed as 

_ 3 ,+l ^ sgn r (l-x)U.^(x)-?|^|(x) 

^ (l+x)l/2(7-x)l/2 

where T^{x) = [(3-x)T^(x)-2]/(l-x) is an r^^-order polynomial. 

Clearly these integrals for eo(r,0) and egfr.l) can be evaluated 

exactly, and one obtains, e.g.. 

eo(l,0) - -1, SqCZjO) = -8 + 6/T?/ir, eg (3,0) = -81 + 72/T27ir, 

eg(0,l) - -1, SQ(1,1) = 2 - 3/T2/ir, eg(2,0) = 15 - 15/T27ir, ••• . 

From Fig. 9, it is also obvious that there are various equivalences between 

thesQ(r,s). For example, one must have that eg(l,0) = eg(0,l) = eg(-l,0) 

= Eg(0,-1) = eg(1,-1) = eg(-1,1), and eg(-j,k) = eg(j-k,k). Such 

equalities are not transparent in the above expressions, however it is 

obvious, using the basic defining expression for eg(r,s), that the six Sg's 

for nearest-neighbor sites (listed above) sum to -6. These results are 

used in the following calculations. 

For a linear, bent, triangular triple of connected traps û 

(where is central) we obtain from (2.20) that, as N+<», P„(t^,^):P„(A2) = 
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1:-646/127*, 1:72/127*-79, 1:1 respectively (so P_(ii,3) - .3823, .3715, 

.3333, and - .2355, .2571, .3333, respectively). For a trap, , 

surrounded by six other traps, the determinant associated with as 

N^o, can be shown to vanish since all of its rows sum to -7 (cf. (3.8)). 

The change fran single trap behavior in the average walk length, <n>, is 

reflected by 5 = -det{e.j}/S^ (cf. (2.22)). As li*», we have that s = 1/2 

for an adjacent pair of traps, and 5 = *(3/T?-2*)-i, |ï-(2*-/T?)-i, 2/3 for 

a linear, bent, triangular connected triple of traps, respectively. 
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APPENDIX C: INVERSES OF DECIMATED FUNDAMENTAL MATRICES 

Let A denote the "fundamental" matrix for some multiple-trap problem, 

and 3 the "fundamental" matrix for some corresponding decimated problem. 

We shall thus write 

8 = 
§ Q 

D I 

-1 
and Ô = 

I Ï 

Z U 

Then from the standard relations y = CS - QB"^£) and Y = -g-iÇU, one 

has that "A-i = U + "A-iQY or 

' (y>ji ^ I 

Finally from (4.4) (or (4.5)), one can straightforwardly make the 

identification 

H E (0)mk . 

jx 
for the probability of capture at trap Aj for a walker starting at site j. 
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14. See for example: S. Kirkpatrick, Rev. Mod. Phys. 574 (1974); S. 

Kivelson, Phys. Rev. B 5755 (1980); H. Scher and C. H. Wu, Proc. 

Nat. Acad. Sci. 7S, 22 (1981). 

15. F. Nielsen, in "Applications of Graph Theory" Ed. R. J. Wilson and L. 

W. Beineke (Academic, New York, 1979). 
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16. Note that if a^,- = 1 + S^^a,., then det{o,..} = i a^fl + T TM. 
ij 'J < 'J k Ic * R 

17. A more detailed asymptotic analysis could follow that of Montroll^^^. 

One can straighforwardly show that the contribution to e(r,s) from kj 

= 0 in (3.2) is given by 3(1 - 6s/L + 6s2/L2 - l/L^) + 0(l-z)i/2. 

18. ^ /g de (a + b cos0)"i = {a?-b2)-i/2^ for a2>b2 and a>b. 

19. The procedure outlined in Ref. 9 where a simple average is taken over 

all trap rows only applies in special cases where all trapping 

probabilities are equal. 

20. T. A. Witten and P. Meakin, Phys. Rev. B 5632 (1983). 

21. R. Botet and R. Julien, J. Phys. A 2517 (1984); R. K. Ziff in 

"Kinetics of Aggregation and Gelation," Ed. F. Family and D. Landau 

(Elsevier, Amsterdam, 1984). 

22. P. Meakin, Phys. Rev. A 604 and 1495 (1983); J. Chem. Phys. 79, 

2426 (1983). 

23. H. B. Rosenstock and C. L. Marquardt, Phys. Rev. B 5797 (1980). 

24. ^ d8(a + b sine + c cose)-! = (a2-b2-c2)-i/2, and 

i P de A + 8 sine + C cose = a)(a2-b2-c2)-i/2, 
"* a + b sine + c cose b2+c2 b2+c2 

for cf >b2+c2 and a>c. 
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MONTE CARLO SIMULATIONS 

In order to test the accuracy of certain of our approximate truncation 

results, we have performed some Monte Carlo simulations of processes of 

interest. The particular systems we have chosen to look at are random 

dimer, linear and bent trimer, and square tetramer filling of a square 

lattice, from Paper I, and random dimer filling of a cubic lattice from 

Paper III. 

To perform a naive Monte Carlo simulation of these random filling 

processes, a large lattice (referred to as the atomic lattice) is initially 

stored in the computer with all sites specified "enpty". The computer's 

random number generator is then used to randomly pick a group of lattice 

sites which has the same configuration as the filling species. If these 

sites are all empty, a filling event occurs and these sites are now 

specified to be "filled". If one or more of the selected sites were 

already filled, no filling event can take place. The computer then 

randomly selects a new group of sites and the procedure is repeated until 

an arbitrary cutoff point is reached (typically, failing to fill the 

selected group of sites a certain number of consecutive times). 

Here, we have chosen a more sophisticated approach where the filling 

processes were carried out on the event lattice, rather than on the atomic 

lattice, as monomer filling with a suitable blocking range (for a 

description of the event lattice see refs. (1) and (3) and Section V of 

Paper I). An illustration of 2D dimer filling on the atomic and event 

lattices is given in Fig. 2. The event lattice is initially stored, in the 

computer, with all sites specified "filiable". The computer then randomly 
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ATOMIC EVENT 

Figure 2: The atomic and event lattice pictures of dimer filling of a 

square lattice 
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picks a single site. If this site is fillable, then a filling event occurs 

and this site and an appropriate group of neighboring sites are specified 

"unfillable". If the site is unfillable, no filling event occurs. The 

event lattice is preferred over the atomic lattice since, to test whether 

or not a filling event can take place at any particular location, it is 

only necessary to test the state of a single site rather than a group of 

sites. The computer routine randomly tests and subsequently fills sites 

until it tests N consecutive times without filling any sites, where N is 

the number of sites in the lattice. At this point it tests all lattice 

sites to determine where filling is still possible and randomly fills 

these. During this last filling stage we lose our time scale, but since we 

are only interested in the final (t-n») number of filling events, this is 

immaterial. To obtain the saturation coverage from the event lattice 

description, multiply the number of filling events by the number of lattice 

sites filled, in the atomic lattice description, during each filling event 

(e.g., by 2 for dimer filling, by 3 for trimer filling, ...) and then 

divide by the total number of sites in the lattice. 

In order to minimize the effects due to finite lattice size, the 

simulations were all carried out on lattices with periodic (cyclic) 

boundary conditions. The lattice size, N, was also varied in order to 

detect any dépendance of the saturation coverage, upon N. 50 trials 

were run at each lattice size. Typically, trials were run at approximately 

9 different lattice sizes with N varying from 400 to as large as 160,000. 

In order to obtain for the infinite lattice we performed a 
c 

weighted linear regression of 0 vs. d/L where d is the lattice dimension 
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and L is the length of one side (the number of sites in the lattice, N = 

L^). For ID a-mer filling, Mackenzieshowed that = (1 + a/N) (a/N) 
2 

^2(3) where A2(a) is some function of a and a is the variance. For the 

infinite lattice (N»a) this result simplifies to Na^= aAgfa). 

Calculations by Pagesupport Mackenzie's work. Wolfshowed that Na^ » 

const for ID dimer filling and his arguments can be straightforwardly 
2 

extended to higher dimensions (the observation that Na « const was also 

made by Jodrey and Tory^®^^ for the random packing of d-dimensional 

hypercubes). Therefore, we expect for the processes considered here that 
2 

a a 1/N. Consequently, we weight each data point by N. 

After calculating the linear regression we found that in every case 

the magnitude of the slope was less than the uncertainty in the slope. 

Consequently, we also calculated the weighted mean for each case and found 

it to be effectively as good a fit to the data (similar reduced chi square 

and no systematic trend in the residuals). Therefore, we feel the linear 

regression is unnecessary, and that the periodic boundary conditions 

effectively eliminate the edge effects (this conclusion is in agreement 

with the results of Jodrey and Tory^®^^). The weighted means of the 

saturation coverage are given in Table I (with ±'s presented as 95% 

confidence limits, calculated using only the point representing the mean 

for each different lattice size) along with the results from our most 

accurate truncation scheme. 

From Table I one can immediately see the accuracy of the truncation 

results for the more compact species. Only for the linear trimer (which 

requires the thickest shielding wall) is the error greater than 1% (as was 
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anticipated in Section VI of Paper I). These results clearly demonstrate 

the reliability of the techniques which we have employed here. 



www.manaraa.com

321 

Table I: Saturation coverage estimates from Monte Carlo simulations and 

truncation techniques for various random filling processes 

Saturation Coverage 

Filling Species Lattice Monte Carlo Truncation 

Dimer square 0.90687 ± 0.00014 0.9068 

Linear Trimer square 0.84659 ± 0.00015 0.8366 

Bent Trimer square 0.83330 ± 0.00023 0.83334 

Square Tetramer square 0.74788 ± 0.00011 0.748 

Dimer cubic 0.91838 ± 0.00018 0.91546 
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CONCLUSIONS 

Summary of Main Results 

In this thesis we have been concerned with various aspects of the 

mathematical modeling of irreversible, random and cooperative processes on 

lattices. The main contributions which have been made can be summarized as 

follows: 

(a) For random dimer, trimer, and tetramer filling of infinite 2D 

lattices, we have demonstrated that the hierarchial truncation techniques 

can produce accurate estimates of the time dependence of the probabilities 

for various small configurations and estimates of the saturation coverage 

(see  Paper  I ) .  

(b) We have generated 2D random dimer filling results which are the 

most accurate, and extensive, available. They provide sufficient insight 

into the shielding propensity of sites to motivate and justify a "shortest 

unsh ie lded  pa th "  t runca t ion  p rocedure  (see  Paper  I ) .  

(c) We have provided the first analysis of, and specific results for, 

2D random t r imer  f i l l i ng  (see  Paper  I ) .  

(d) We have developed a sophisticated treatment of processes 

involving competitive, irreversible (immobile), random filling of monomers, 

dimers, ... on 2D lattices. These are the first such results for non-

t r i v ia l ,  compet i t i ve ,  i r reve rs ib le  l a t t i ce  processes  i n  2D (see  Paper  I I ) .  

(e) A reliable description of the kinetics of random dimer filling of 

the 3D cubic lattice (focusing on probabilities of smaller 

subconfigurations) has been obtained, including estimates of the saturation 
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coverage. This is the first time that a nontrivial irreversible process on 

a 3D lattice has been explicitly treated by exploiting the structure of the 

cor respond ing  exac t  h ie ra rch ia l  ra te  equa t ions  (see  Paper  I I I ) .  

( f )  We have  exp l i c i t l y  ana lyzed  the  e f fec t  o f  a  s tochas t i ca l l y  

specified distribution of inactive sites on a random filling process (see 

Paper III). 

(g) We have provided the first extensive, exact analytic 

investigation of the filled cluster-size distribution for a ID 

irreversible, cooperative filling process. Our calculations cover a large 

enough size range to determine the asymptotic decay behavior (see Papers IV 

and  V ) .  

(h) A novel approach for the direct extraction of asymptotic 

properties of the cluster-size distribution from the suitably recast 

hierarchial equations has been developed. This technique may also prove to 

be applicable to higher-dimensional irreversible filling processes (see 

Paper  IV ) .  

( i )  We have  deve loped  the  fo rmu la t ion  o f  Mon t ro l l ^ ^^^  to  p rov ide  

explicit results for the large-lattice-size asymptotic behavior of trapping 

probabilities and average walk lengths for a single random walker on a 

lattice with multiple traps. Procedures for exact calculation of these 

quan t i t i es  on  f i n i te  la t t i ces  were  deve loped  as  we l l  ( see  Paper  V I ) .  

( j )  We have  pe r fo rmed  Monte  Car lo  s imu la t ions  o f  ce r ta in  p rocesses  o f  

interest in order to test the accuracy of our approximate truncation 

results. The results of our simulations clearly demonstrate the 

reliability of the truncation technques which we have employed here. 
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Extensions 

There still remains much room for additional improvements, extensions, 

and applications of the models used here. A brief description of present 

and future work, some of which is nearly completed, follows. 

Many extensions of earlier ID results to two (and higher) dimensions 

are possible. Some basic problems to be considered include the analysis of 

the large separation behavior of the two-point correlations, the effect of 

limited mobility, and the extension of the asymptotic cluster-size 

distribution analysis in higher dimensions. Preliminary development of the 

long range correlations for the 2D random dimer filling problem has already 

been made^^^^ and in Paper IV the extension of the asymptotic cluster-size 

distribution analysis has been clearly outlined. 

Improvement upon our approximate truncation techniques is a goal, 

particularly if we wish to consider the filling of large species, or 

filling with more extreme or longer range cooperative effects. In Paper I 

we presented the "shortest unshielded path" (s.u.p.) truncation which 

served to reduce the number of equations at a particular truncation order 

by truncating conditioning sites which had only a small influence on the 

conditioned site of interest. However, these new configurations tend to be 

more disconnected and seem to cause some problems in the numerical 

integration routine near saturation. As a result we have since combined a 

higher order s.u.p. truncation with a lower order sever truncation to 

truncate only those sites which both truncations would remove. This hybrid 

truncation, thus, still removes those distant conditioning sites (which do 

not significantly influence the conditioned site, but greatly increase the 
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number of equations), and keeps all of the closer conditioning sites which 

lead to compact, connected configurations whose probability rate equations 

are easily integrated. Further refinements are still necessary, but this 

new truncation shows some promise. 

Some additional higher-dimensional features which have not been 

addressed in detail include the effects of the lattice coordination number 

and  the  e f fec ts  due  to  the  shape  o f  the  f i l l i ng  spec ies  (e .g . ,  ben t  vs .  

linear trimers). 

Another effect which needs to be expanded upon in higher dimensions is 

the effect of an edge or a corner; the former can be applied to the study 

of terraces in 2D, and both can be used to study finite size effects. 

Issues which need addressing include the distance dependence of the 

dissipation of edge effects and the effects of finite size on infinite 

lattice results. Edge effects also play an important role in processes 

involving multiple-layer adsorption. 

The effects of simultaneous vs. sequential filling mechanism, when the 

filling species occupies more than a single site, need to be addressed. 

Since Page^^^ first pointed out the difference between conventional 

(simultaneous) and end-on (sequential) filling, no explicit acknowledgement 

that a difference exists has appeared in the literature prior to our work. 

Indeed, confusion on the point has led to difficulties and discrepancies in 

comparison of results (see ref. (33) and the Discussion section of Paper 

I I ) .  

A more general extension of these techniques is to continuous space 

filling problems (e.g., disk or sphere packing) as opposed to the discrete 
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lattice cases already considered. This type of extension has been 

successfully implemented in ID by Wolf. These problems should provide 

insights into the structure of liquids, crystals, and absorbates on 

surfaces. For instance, Feder^®^^ has proposed 2D sequential disk packing 

as a model for protein adsorption and for particles in a biological 

membrane. 

There are many logical extensions to our work on random walks. The 

application to the Brownian aggregation process (a process where a gas of 

random walkers irreversibly aggregate to form immobile clusters) where 

growth rates are related to (average) walk lengths is a prime example. A 

natural extension of this is to calculate the complete walk-length 

distribution (rather than just the average) and use this to obtain more 

accurate rates. The use of the complete walk-length distribution in the 

analysis of single-cluster growth models has previously been 

suggested 

Additional areas to be pursued include extending the analyses to 

include complications such as attractive or repulsive forces between 

clusters and walkersor the effect of limited mobility within a cluster 

which can lead to cluster rearrangement. 
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